UBICOMP '15, SEPTEMBER 7-11, 2015, OSAKA, JAPAN

Reading between Lines: High-rate, Non-intrusive Visual
Codes within Regular Videos via ImplicitCode

Shuyu Shi Lin Chen
National Institute of
Informatics, Tokyo, Japan

shi-sy @nii.ac.jp

ABSTRACT

Given the penetration of mobile devices equipped with
cameras, there has been increasing interest in enabling
user interaction via visual codes. Simple examples like
QR Codes abound. Since many codes like QR Codes
are visually intrusive, various mechanisms have been ex-
plored to design visual codes that can be hidden inside
regular images or videos, though the capacity of these
codes remains low to ensure invisibility. We argue, how-
ever, that high capacity while maintaining invisibility
would enable a vast range of applications that embed
rich contextual information in video screens.

To this end, we propose ImplicitCode, a high-rate vi-
sual codes that can be hidden inside regular videos. Our
scheme combines existing techniques to achieve invisi-
bility. However, we show that these techniques, when
employed individually, are too constraining to deliver a
high capacity. Experiment results show that Implicit-
Code can deliver a significant capacity boost over two
recent schemes, up to 12x that of HiLight [19] and 6x
or 7x that of InFrame [32], while maintaining a similar
or better level of invisibility.

Author Keywords
Screen-camera communication; Non-intrusive visual
codes; Flicker fusion

ACM Classification Keywords
C.2.1 Network Architecture and Design: Wireless Com-
munication

INTRODUCTION

The proliferation of mobile devices has generated re-
newed interest in enabling rich user interactions, both
between the user and the device, and aiding the user to
interact with the environment. Mobile phones are now
equipped with assorted sensors, which can gather infor-
mation about the environment and facilitate context-
aware applications such as location based services.

In particular, phone cameras have been used to capture
visual tags [28| 29 as authentication tokens since their
early days. With the camera capability growing at a fast

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

UbiComp ’15, September 7-11, 2015, Osaka, Japan.

Copyright © 2015 ACM 978-1-4503-3574-4/15/09...$15.00.
http://dx.doi.org/10.1145/2750858.2805824

Wenjun Hu
Yale Univerisity
New Haven, CT, USA
{lin.chen, wenjun.hu} @yale.edu |gruteser@winlab.rutgers.edu

157

Marco Gruteser
WINLAB, Rutgers University
North Brunswick, NJ, USA

pace with each phone model revision, visual codes and
their applications are also flourishing. For example, QR
Codes [1], originally designed to tag cars for tracking
in the automobile industry, are now seen everywhere
(e.g., see Figure 1 of |16]), and often link the physical
objects (or products and services) carrying these codes
with their presence on the Internet. Product brochures
(e.g., from IKEA) sometimes have dedicated prompts
inviting the user to scan a page with their camera and
obtain further product information or discount coupons.

We are also surrounded by an ever increasing number
of electronic displays from TVs to public displays. To
facilitate interaction across pervasive devices, it would
be helpful for a mobile device to easily detect the display
it is pointed at and the screen content shown. Adding
visual codes to the displays could achieve this, similar
to how printable visual codes have enhanced interaction
with physical devices.

Since many codes like QR Codes are not designed to be
aesthetically pleasing but occupy a prominent area of
the display surface, they are visually intrusive yet in-
comprehensible to our eyes. There have been a long se-
ries of efforts designing visual codes that can be hidden
inside regular images or videos. This dates back to early
techniques of steganography and digital watermarking.
More recently, a number of new schemes, VR Codes|34],
HiLight[19], and InFrame[32|, exploit new avenues for
hiding the barcodes using existing commodity hardware.

HiLight modulates bits in slight changes in the pixel
translucency level, which adjusts the color intensity of
the host image in imperceptible ways while creating a
channel for communication. VR Codes leverages the
flicker fusion property of the human visual system when
viewing videos played at more than 60 fps, i.e., adjacent
frames are perceived to be mixed together, and therefore
a video of two alternating frames can appear as a static
image. InFrame builds on the insight from VR Codes
to design a visual code displayed on a high-rate display.

Although previous schemes have explored various mech-
anisms for hiding, the capacity of these codes remain low
in order to ensure invisibility.

We argue, however, that high capacity while maintain-
ing invisibility would enable a vast range of applications
that embed rich contexts in video screens, without hav-
ing to resort to additional WiFi or cellular connectivity.
Consider a movie screening scenario. Ideally, our eyes
should just see the regular movie, but subtitles, foreign
language tracks, background information about the ac-

mailto:shi-sy@nii.ac.jp
mailto:lin.chen@yale.edu
mailto:wenjun.hu@yale.edu
mailto:gruteser@winlab.rutgers.edu
mailto:http://dx.doi.org/10.1145/2750858.2805824

tors, and product purchase information could all be em-
bedded into the movie and viewable with a Google-glass
like device. Such visual codes require a significantly
higher capacity than conventional visual tags encoding
simple identification information of URL strings. Even
for URL strings, we need a high throughput to enable
low-latency detection. For example, detecting a 1000-
bit URL within 100 ms of pointing the phone at the
display requires a data rate of at least 10 kbps. The
capacity potential can also be traded for a longer oper-
ating range, as shown by Strata [16].

A close examination of HiLight and InFrame suggest
that the barcode hiding techniques, when employed in-
dividually, are too constraining to the capacity. This
is because these permit only very subtle changes in the
color of spatially and temporally adjacent code blocks to
effectively hide the barcode from our eyes. These sub-
tle changes provide very low signal-to-noise ratios and
hence low capacity values. On the other hand, a pre-
requisite for a high-capacity code is sufficient distances
between similar codewords, in this case the colors rep-
resenting different bits.

That said, we find that combining these barcode hiding
techniques in a simple way can be surprisingly effective.
The key in our design is to smooth the color transition
between adjacent blocks as efficiently as possible. We
regulate the color change using limited translucency ad-
justment and then blend the colors of blocks adjacent
both in space and in time. The resulting visual codes,
ImplicitCode, deliver a high capacity while simultane-
ously remaining visually non-intrusive.

Although our scheme is simple, it outperforms compet-
ing schemes while offering more flexibility in the sup-
ported host images or videos. We implemented the Im-
plicitCode decoder as an iOS app as well as a desktop
version for easy comparative performance evaluation.
Experiment results show that ImplicitCode can deliver
a significant capacity boost to two recent schemes, up
to 12x that of HiLight [19] and 6x or 7x that of In-
Frame [32]. Compared to HiLight, we relax the permit-
ted translucency change to boost the capacity. Com-
pared to InFrame, the capacity gain comes from using
fewer blocks to achieve a smooth color transition.

To summarize, we make the following contributions:

e We show that existing techniques using a single do-
main of non-intrusiveness achieves that at the expense
of capacity, and may not eliminate flicker entirely.

e When combined, these techniques can simultaneously
achieve invisibility and a high capacity.

e We design and implement ImplicitCode leveraging the
above insight. ImplicitCode can deliver a significantly
higher capacity than recent competing schemes.

BACKGROUND AND MOTIVATION

Related work

Hiding data and enabling communication implicitly in
the environment is an important requirement for ubiqui-
tous computing [33]. Even since phones were fitted with

158

UBICOMP '15, SEPTEMBER 7-11, 2015, OSAKA, JAPAN

cameras, they have been leveraged to interact with the
environment |28, 29].

Many visual codes have been designed for communica-
tion, from the more traditional 2D barcodes such as
QRCodes [1] and Data Matrix [2] to videos of barcodes
over display-camera links |24} (12 |15] |16 |31]. These
are normally optimized for robustness, high capacity, or
scalability with diverse operating conditions, and are vi-
sually intrusive. Instead, ImplicitCode aims to deliver
a high capacity while being visually non-intrusive. We
focus on the most relevant schemes below.

Data hiding via Steganography. Steganography
and watermarking technologies have been traditionally
employed to communicate secret data in images and
videos [10, [21]. Such hidden data can be used for
copyright protection or authenticity detection[13} (11, 8|.
More recently, many printed brochures come with em-
bedded codes|3, |25 26, 27], often encoding URLs linking
to more product information, and the reader is encour-
aged to scan those printed pages using their phones.

These schemes tend to be optimized for robustness, and
embed static, short messages, which are easier to encode
and decode. Instead, ImplicitCode joins other recent
schemes to enable concurrent visual channels between
display-camera links. These channels convey both ex-
plicit visual information for human eyes to consume and
invisible, dynamic messages for the camera/decoder.

Unobtrusive display-camera communication. An
earlier work proposed double-phase coding, such that
the embedded information appeared as random back-
ground noise to the carrier image|l8], although the
scheme was only simulated. Bokode |23] is a novel 2D
barcode which embeds data in the bokeh leveraging a
special lens setup and captures it with an out-of-focus
camera. AiD [35] is an LCD-based device which can
alternately display between RGB backlight and near-
infrared (NIR) backlight at 120 Hz. As human eyes
cannot see the NIR spectrum, it can deliver informa-
tion unobtrusively. Both Bokode and AiD require cus-
tom hardware. Other psychovisual features were also
studied extensively to model human gaze 22} |17} [14].
Temporal psychovisual modulation (TPVM) [36] is a
general paradigm that leverages the psychovisual redun-
dancy of a signal display with a refresh rate over 60 Hz
to present multiple visual percepts for different viewers.

A few recent schemes achieve invisible coding using com-
modity display and cameras on mobile devices, includ-
ing VRCodes [34], HiLight [19] and InFrame [32]. These
techniques individually can only offer limited benefit.
However, when combined, these basic techniques can
deliver a high capacity while remaining visually non-
intrusive, as shown by the performance of ImplicitCode.
We defer detailed descriptions of related coding schemes
to later in this section.

Cause of intrusiveness
Conventional barcodes use colored patterns to encode
bits, either directly in the spatial domain, or in the fre-

SESSION: CAMERAS, CIRCUITS AND INTERFACES

Block B
]

Frame k+2

Block A

Pvisible
border
Block B

Block A

Color Ax2

(a) Spatial (b) Temporal

Figure 1: Intrusive block color transition.

(a) Low contrast (b) High contrast

Figure 2: Tradeoff between barcode visibility
and ease of color detection.

quency domain. In order to recognize these patterns,
their colors must be distinguishable, even in cases of
low light, hardware noise, and ambient light. In other
words, there must be a noticeable color transition be-
tween different patterns. Unfortunately, such differ-
ences are also prominent to human eyes, even though
these barcode patterns are incomprehensible and hardly
appealing visually.

Spatial transition is a defining feature of common bar-
code designs. Consider a QR Code, for example, which
is composed of many black and white blocks. When any
adjacent blocks have different colors, a clear border is
visible between the blocks (Figure .

Suppose we now want to display several different QR
Codes in succession as a video. Temporal transition
can also be an issue. This is seen between blocks at the
same position in successive code images when they have
different colors, as shown in Figure

Further, a dedicated area of the screen or the print
medium is needed to display the barcode. Ideally, we
would like to embed a (sequence of) barcode(s) into a
regular image or video to hide it from the human visual
system.

Challenges in hiding barcodes

Fundamentally, the challenge to designing an invisible
barcode is the tradeoff between visibility and ease of
barcode detection and decoding by the camera/decoder.
This tradeoff limits the capacity of these barcodes and
dictates the decoding complexity.

Figure [2 shows a toy example of two barcodes with
different levels of color contrast, with black for 0 and
white/gray for 1. The color changes are less sharp on
the left, and could potentially be superposed on a reg-
ular image. However, there is a higher probability of
confusion between the black and gray blocks if the im-
age is not captured perfectly.

159

Existing techniques for hiding barcodes

Roughly speaking, existing techniques for hiding in-
formation exploit either the spatial (pixel), temporal
(inter-frame), or frequency domain properties of the
carrier image or the video.

Frequency domain. The overall idea is to turn a host
image to the frequency domain, and modulate some
bits to the high-frequency components of the image.
These components affect the image less than their low-
frequency counterparts. When transformed back to the
spatial (pixel) domain, the changes are spread over the
entire image and less noticeable than direct changes to
the pixels.

There are two main disadvantages. First, frequency
domain coding by itself still alters the pixel domain
patterns, and the embedded code is usually visible in
smooth areas of the host image or video frame. There-
fore, it is difficult to generalize this to any host image or
video. Second, frequency domain processing is usually
more computationally intensive, which incurs decoding
latency on less powerful mobile devices.

Spatial. The pixel colors can be adjusted directly by
tuning the translucency value, which effectively scales
the intensity level of the overall image. If up to 1% of
this value is changed, the resulting difference would be
imperceptible to human eyes, as shown in HiLight [19).
This then creates an opportunity for modulating infor-
mation. However, the small change is a rigid constraint
on the channel capacity and does not permit simple, ef-
fective modulation directly in the pixel domain. HiLight
encodes bits using a sequence of translucency changes
over frames.

Temporal. Videos often exhibit temporal correlation
due to mostly similar scenes. Such redundancy could
be leveraged to modulate bits, for example, by using
different motion vectors. However, this faces the same
issue as seen in the frequency domain technique, in that
the exact encoding is also dependent on the host video
and hard to generalize.

A more recent technique exploits the inherent limitation
of the human visual perception system. Our eyes can
only distinguish individual video frames displayed up
to 60 fps (or pulses up to 60 Hz). Beyond that rate,
the frames will appear fused together to our eyes. For
example, two alternating pure-color frames (so-called
complementary frames) shown at 120 fps appears as a
static image, whose color is approximately the average
of the two actual colors. We can then generate a barcode
image and its complement, add each to a host image,
and make a video from alternating these two embedded
images to hide the barcode image into the host image.

VRCodes [34] is the first system that exploits the ef-
fect of flicker fusion to design a novel visual code. In-
Frame [32] builds on VRCodes and uses a high-refresh-
rate display to show a video embedded with barcodes.

UBICOMP '15, SEPTEMBER 7-11, 2015, OSAKA, JAPAN

Original
carrier

Color =V
frame / ©

Dimmed
frame

Com;)lementary
rames

Brightened
frame

A block = a by a pixels

Training column

Width = N pixels

Figure 3: Frame layout of encoded videos using ImplicitCode.

Unfortunately, the border of any two complementary
blocks of different colors remains visible in VRCodes
(shown later in the paper in Figure. Although it can
be mitigated by introducing dummy blocks of intermedi-
ate colors between the intended blocks in InFrame ,
this is a fundamental limitation of the color fusion be-
havior . Overall, InFrame does not effectively address
spatial block color transition and is not suited to videos
with texture-rich natural scenes.

Addressing the limitations. Since any single tech-
nique above is limited, we explore combinations of them.
Specifically, ImplicitCode combines the basic techniques
in the spatial and temporal domain, along with edge
smoothing between code blocks to mitigate any sharp
transition. This is detailed in the next section.

SYSTEM DESIGN

Overview

Typically, the human visual perception system can only
distinguish temporal information at a rate of up to
60 H If a video is played at a higher rate, the per-
ceived frames will simply be mixtures of the original
video frames. This effect is analogous to recording
a video at a lower capture rate than the display rate
[15]. The overall idea of ImplicitCode is to display a
video embedded with barcodes at a high rate (120 fps),
such that the barcodes will be blended within the reg-
ular video when viewed at a low frame rate, but a high
capture rate camera (at 240 fps) can still detect individ-
ual displayed frames, thereby decoding the barcodes.

The design of ImplicitCode answers three key questions:
(1) How to modulate bits by leveraging the perceived
color fusion effects of the human visual system when
viewing a video played at higher than 60 Hz?

(2) How to smooth the block transition spatially and
temporally to effectively hide the code blocks in the car-
rier video?

(3) How to decode the hidden barcodes accurately?

!There are other factors (amplitude, spatial dimensions) at
play that may allow flicker perception even above 60 Hz,
though not significantly higher.

160

In the rest of the paper, we will refer to the original video
without the barcodes as the carrier video. Once bits
are encoded into the carrier video, we obtain a barcode
video. Finally, we record the barcode video and try to
decode those added bits from the captured video.

Modulating bits

Given a bit string, we first add error correction using
Reed-Solomon coding of rate (80, 128) and then modu-
late the bits into the carrier video.

Figure |3] illustrates the modulation and the encoded
frame layout. From a grayscale carrier video, we
first duplicate each frame and divide them into square
blocks. The corresponding blocks in each pair of dupli-
cate frames then have their colors adjusted to encode
bits. Specifically, for a pair of corresponding blocks, we
represent 0 by using the blocks as they are from the orig-
inal carrier video. To represent 1, the color of the first
block is changed to colorsriginal X (1 —), while the sec-
ond block has its color turned to colororigina X (14),
where 3 is the change in the color translucency level,
measured in percentage. The translucency basically
controls the color intensity of the original video. Vi-
sually, the video can be dimmed or brightened by ad-
justing this parameter. We will discuss its value in the
next subsection.

With bits added, the pair of ‘duplicate frames’ have be-
come complementary frames. When two complementary
frames are mixed together, the mixture appears visually
indistinguishable from the original frame in the carrier
video.

Frame layout. Once bits are modulated into the com-
plementary frames, we add a few special patterns to
help with decoding.

First, we add a training column of known colors to the
left of each barcode video frame. These blocks will help
us calibrate the threshold to classify the color of a bar-
code block to decode it to 0 or 1.

Second, we add a thin vertical bar, a frame marker, to
the right of each barcode video frame to help identify a

SESSION: CAMERAS, CIRCUITS AND INTERFACES

Table 1: Adaptive translucency change

Average color intensity of block | Translucency 3

<79 12%
80 - 169 %
> 170 5%

complete frame during capture. The bars in a pair of
complementary frames are white and black respectively,
such that they always mix to appear as a static gray bar
to the human eye, again leveraging the frame mixing
effects of the human visual system.

Finally, we surround each frame with a white border,
similar to that of a QR code, to delimit the frame area
against any background around the display.

Each barcode design typically comes with a specific
frame pattern to aim frame detection. Our design par-
tially follows the QR Code design. We have tried using
the QR code corner patterns as well, but there was no
noticeable improvement to the detection performance.

Smoothing code block transitions

Since we use color blocks to represent 0 and 1, any bit
flip across blocks induces a change in the block color. In
order for these bits to be hard to detect to the human
eye, we need to smooth the transition between such color
changes. The effects can be seen both temporally and
spatially. In particular, previous work[34} 32] did not
adequately address spatial transition.

Both types of transitions can be alleviated with a small
translucency change threshold. However, if the thresh-
old is too small, the colors to represent 1 and 0 will be
almost indistinguishable. Therefore, we need to deter-
mine the optimal threshold.

Determining the translucency change 5. We make
pure color videos as the carrier videos, with their inten-
sity varying from dark to bright using grayscale values
60, 140, and 220 respectively. We then vary the translu-
cency change threshold 8 at 1% increments to generate
more pure color videos. 15 subjects were asked to view
these and report whether they appeared the same as the
original three colors.

We found empirically that the darker the video, the
larger B can be. For the three pure color clips, the
threshold can be up to 12%, 7% and 5% respectively
while the color changes remain imperceptible. For reg-
ular videos showing a range of intensity levels within
each frame, we adapt the 8 value based on the average
color intensity of a block, as shown in Table |1 using the
results of the pure color clip tests.

Spatial transition. Unless spatially adjacent blocks
in a pair of complementary frames always encode the
same information, a sharp transition occurs if the cor-
responding bits flip between 0 and 1. To reduce this
effect, we adopt a standard edge smoothing algorithm,
such as the one in Matlab, to blend together adjacent
blocks in each frame.

161

Before smoothing

After smoothing

Figure 4: The border between the blocks before
and after smoothing.

The effect is shown in Figure [d In the right figure, the
color transition between the two blocks is smooth and
the border in between is less obvious.

Temporal transition. Once the translucency thresh-
old is chosen, temporal transition is achieved automat-
ically when the barcode video frames mix together.

Remarks. Although all techniques so far aim to re-
duce visual intrusiveness, they have a collateral bene-
fit of increasing the capacity, because we achieve non-
intrusiveness using a minimum number of code blocks.
Thanks to this, ImplicitCode is able to modulate more
bits than competing schemes using the same number of
code blocks. As we will show later, competing schemes
trade off capacity to ensure invisibility.

Decoding

There are two main challenges in the decoding process:
extracting the barcode blocks and determining their
color values.

Identifying complementary frames. Since the bar-
code video is recorded at twice the display rate, we ex-
pect to capture 4 frames for every pair of complemen-
tary frames. Due to the rolling shutter effect from the
CMOS camera sensor|34, |15], 2 of the 4 recorded frames
may be captured while the original video is transitioning
from one frame to the next one. In other words, these
recorded frames are mixtures of two frames|24, |12} [15],
and should be discarded.

For the remaining two captured frames, the frame
marker in one is brighter (in fact, it is brighter in this
frame than in the other 3 of the 4 frames). This is iden-
tified as the first of the complementary frames. The
remaining frame is the other complementary frame.

Once we bootstrap one pair of complementary frames,
the rest can be identified similarly by examining succes-
sive groups of 4 captured frames at a time.

Extracting barcode blocks. For each pair of comple-
mentary frames, we subtract the first frame (the dimmer
one) from the second (the brighter one), i.e., we perform
(C01orb7'ighte7' frame ~ coloTgimmer f7'ame) piXQlWise-
This leaves us with a difference frame per pair of com-
plementary frames.

Determining code block color. Conventionally, the
color of a block is determined by comparison to a thresh-
old value. This value may be static or determined dy-
namically (as for QR Codes). Both approaches assume
that the same few absolute colors are used consistently

throughout the barcode frames. This is reasonable, as
traditional barcodes only use a few colors to modu-
late bits, such as QR Codes (using black and white)
or HCCB|5| (using 4 colors).

Determining the threshold value is harder for Implic-
itCode, however. Since we modulate bits as relative
color change to the carrier video, we cannot use absolute
threshold values. For example, the grayscale value of
100 might normally be considered black and represent-
ing 0 in QR Codes, but for ImplicitCode, it could be 1
if the carrier video block is even darker. In other words,
we also need to determine the threshold between the col-
ors representing 1 or 0 relative to the carrier video, even
though we cannot assume any a priori knowledge of the
carrier video. Therefore, we resort to linear SVM[9], a
training based approach.

The linear SVM-based classification method needs n
training blocks whose labels (0 or 1) are known before-
hand. Then we scan the blocks representing bit 0 (or 1)
to find the maximum (or minimum) grayscale value of
the blocks. The average of the minimum grayscale value
for 1 and the maximum for O is set as the threshold.
The rest of the blocks in the frame are then classified as
corresponding to 0 or 1 based on this threshold value.
Ideally, we want the brightness of the carrier image at
these training blocks to be representative in order to
increase the successful classification rate.

Specifically, we take the following steps:

1. For each block in the training column, choose a quar-
ter of the pixels around the center of the block to cal-
culate the average color intensity of the block.

2. Since we know the bit value represented by each
block, we find the minimum color intensity (minBit1)
of all bit-1 blocks and the maximum color intensity
(maxBit0) of all bit-0 blocks.

3. After scanning all blocks in the training column, we
compute threshold = (minBitl + maxBit0)/2.

We will show in the performance section that the com-
plexity of this classification, a one-pass scan, is compa-
rable to that of traditional approaches. Due to the tem-
poral similarity between successive carrier frames, the
same training results might suffice for several frames,
although we currently perform the training once per
frame. We leave the optimization to future work.

ImplicitCode IMPLEMENTATION

Encoder

The encoder is implemented in Matlab, using the image
processing toolbox.

Each frame of the carrier video is loaded to Matlab or
generated as a matrix of grayscale values, and subse-
quent operations are directly performed on these values.
Given an input bit string for the barcode, the comple-
mentary frames are generated by adjusting the grayscale
values as described in the previous section. Block edge
smoothing is done using the built-in image-blending
tools in Matlab[6]. Finally we put the encoded frames

162

UBICOMP '15, SEPTEMBER 7-11, 2015, OSAKA, JAPAN

together into a 120-fps video in .mkv format (without
compression) using FFmpeg. Quick experiments show
that saving the 120 fps video in .mp4 hardly affects the
decoding accuracy, but the uncompressed format plays
back more smoothly and minimizes player side artifacts
for our experiments. This is then shown on a display
with at least 120 Hz refresh rate and GPU hardware
that is sufficiently powerful to drive the display.

Decoder

We implement the decoder both as a desktop emulation
to be run offline and as an iOS app to be run online. The
software libraries used are the same for both versions,
except that the app is integrated with the i0S APIs.

(Barcode) video recording. We record the barcode
video using the regular video recording functionality of
the camera on iPhone 6 at 240 fps. We obtain a video
in .mp4 format this way.

Processing individual recorded frames. After we
record the video, two threads are used to generate indi-
vidual video frames and to decode the barcode images
extracted from the recorded frames. This roughly corre-
sponds to pipelining the decoding processing, with each
threading corresponding to one stage of the pipeline.

The recorded video is only available in a compressed
format, and therefore we need to effectively decode the
video to pull out individual frames for further pro-
cessin This is done in the first thread, using the
AVFoundation framework in i0S. Once a frame is gen-
erated, we add it to a dispatch queue, a shared queue
between threads.

The second thread then applies image cropping methods
and perform perspective transformation to the frames in
the queue. It then decodes the barcodes following the
procedure described in the previous section.

With this implementation, generating individual video
frame is the bottleneck. We have observed that the
second thread always completes more quickly and the
system is usually blocked on the first thread to gener-
ate individual video frames. This is a limitation from
existing tools and APIs, and we cannot improve this at
the moment. In contrast, decoding the frames can be
accelerated by employing more concurrent threads, i.e.,
more copies of the second thread above.

PERFORMANCE
Overall setup

Test videos and default encoding parameters. We
use 9 carrier videos. Three of them are the same pure
color videos mentioned earlier. Each is essentially an
image of a single color. The color intensity levels of
the three vary from 60 to 220 in grayscale values. The
other 6 videos are selected from the standard test video
sequences [7]: coast, news, mobile, foreman, cactus, and

2In comparison, Android provides an API to return individ-
ual raw captured frames if the frame capture rate is below
30 fps. That would obviate the need for this first thread in
our system.

SESSION: CAMERAS, CIRCUITS AND INTERFACES

(b) medium

2

(g) foreman

s

(i) suzie

(h) cactus

Figure 5: Snapshots of the carrier videos used.

suzie. They feature a range of color contrast levels, mo-
tion, and background texture. These videos are usually
used to evaluate how various components of complex
natural scenes affect the performance of a video coding
algorithm. Similarly, these components also affect the
performance of ImplicitCode. Figure[5]shows a snapshot
of each sequence, and we embed barcodes, composed of
random bit strings, in the entire sequence for each video.
Unless otherwise specified, each carrier video frame is
divided into code blocks of 32x32 pixels each. We play
all barcode videos at 120 fps using the MPC-HC player
on an ASUS VG278HE display, which is capable of a
refresh rate up to 144 Hz.

Default capture conditions. In most experiments,
the barcode videos are recorded using the camera of
an iPhone 6, 40 cm from the screen at 240 fps, using
all the auto settings, and the captured video resolution
is 1280720 pixels. We use the iOS decoder app to
measure timing and the desktop decoder for compari-
son experiments, as it is easier to obtain logs from the
desktop decoder and perform analysis. For each cap-
ture setting, we record the video 10 times and report
the average results over the 10 captures.

Metrics. Recall that the design goal for ImplicitCode
is to achieve a tradeoff between visual-intrusiveness and
rate. Therefore, we evaluate ImplicitCode in terms of
a subjective measure of visual-intrusiveness reported by
subjects watching the videos and the achievable bit rate
for the barcodes embedded. The latter is the combined
effect of the barcode capacity due to our encoder design
and the decoding accuracy (the percentage of correctly
decoded bits out of all bits embedded). We will examine
these in detail below.

Microbenchmarks

Decoding time. We measure how long it takes to
decode each barcode frame using the i0S app. Table[2]
shows the results.

Training column placement. In our design, the left-
most column of each video is used as the training col-
umn to aid decoding. We next show that the decoding

163

Table 2: Processing time breakdown

Operation ‘ Time (ms)

Frame detection 17
Frame selection 1

Frame subtraction 10
SVM decoding 12

‘ Bright -V Mobile Suzie‘
< 98t
=
Q
%’ 96}
9] VEW. Yo
g ek] n\y o el Y
s 94f Vol T AN R
g w S Vi ".‘ HES2 BE ! TR
‘é Coe Y 'y
& 92¢ ' L

1 6 11 16 21 26 31 36 41

Column index

Figure 6: Training column placement and decod-
ing accuracy.

performance is not sensitive to (1) the training column
placement, or (2) the carrier video content. For each
carrier video sequence, we randomly select 40 frames
from different parts of the sequence, and use column p
of the pt" frame (out of the 40) as the training column
for that frame. Figure [6] shows that the decoding per-
formance is quite stable regardless of the frame content
or the training column placement. The videos shown
have the highest/lowest decoding accuracy.

Different thresholding techniques. As explained
earlier, ImplicitCode cannot use a conventional static
or dynamic thresholding approach, so we rely on lin-
ear SVM-based training. The time complexity for this
method is N, including n units of time for training and
N —n units of time for classification. We next compare
this approach to several alternatives, both analytically
and experimentally.

Using static thresholding, we can define a pre-
specified grayscale value, say 127, as the dividing point
between “white” and “black”. For a frame with N
blocks, the total time needed to determine all block col-
ors is then NN, which is the minimum necessary. How-
ever, static thresholding cannot adapt to the ambient
brightness level or the dynamic range of the camera. For
example, white blocks may be mis-classified as black in
a dark environment.

Alternatively, we can scan all N blocks of a cap-
tured frame once to find the maximum and minimum
grayscale values, and take the average of the two ex-
tremes as the dynamic threshold. Then we scan the
whole frame for a second time to determine the color of
each block. This way, the decoding process can adapt
to the capture conditions. The total time needed for
the whole color classification process is then 2N, N for
each scan. For ImplicitCode, however, the brightness

Table 3: Comparison of decoding thresholds

Method [Accuracy | Complexity
Static 53.2% N
Dynamic | 65.7% 2N
SVM 93.6% N
k-NN 93.5% [3(-n*+n+N?—N)
95t
&
? 90t E
= 85} S Dark
LaJ / M??I;:lium
2 80})74 Bright
a0 7 »—x Coast
g 751 / 5 &-© News
g 3‘_‘;‘_‘::.‘25 ¥V Mobile
g 70t Foreman | |
A Cactus
651 Suzie]
8x8 12x12 16x16 20x20 24x24 28x28 32x32

Block size
Figure 7: Decoding accuracy and block size.

distribution of the carrier image may skew the grayscale
extremes and hence the threshold value calculated.

Similar to SVM, k-NN/9] also requires n training blocks
with known labels. In contrast to the other methods,
k-NN does not define an explicit threshold. It assigns la-
bels to a block pending classification by a majority vote
among k blocks with similar grayscale values that have
already been assigned labels. The running time for k-
NN is SN " t(n+i—1, k), where t(n+i—1, k) is the time
needed to find k nearest neighbors among n+:—1 points,
determined by the nearest neighbor search algorithm. If
we use the naive linear search, the time complexity for
k-NN will be 1 (—n? + n+ N? — N). Table[3|compares
the decoding accuracy averaged over all frames and the
time complexity using the four thresholding techniques
discussed. N is the total number of blocks available per
frame, and n is the number of blocks used for train-
ing. It is clear that neither static or dynamic thresh-
olding delivers adequate decoding performance. SVM
and k-NN can achieve comparable decoding accuracy,
but k-NN incurs a higher time complexity. Therefore,
we use SVM in ImplicitCode. This essentially bounds
the decoding accuracy results in later experiments.

Further, the SVM-based approach automatically adapts
to the ambient light conditions. Our experiments show
that different lighting conditions have little effect on the
decoding performance, and we omit detailed results.

Performance vs block size. The code block size af-
fects the decoding accuracy in two ways. First, due to
the edge smoothing, only the center part of each block
can be used for decoding. If the block is too small,
even the center pixels may need to have their colors ad-
justed in the edge blending operation. Second, in gen-
eral a larger block affords more redundancy within the
block to guard against pixel noise. On the other hand,
more bits can be embedded into the carrier video using
smaller blocks.

164

UBICOMP '15, SEPTEMBER 7-11, 2015, OSAKA, JAPAN

700
% Dark

600} Medium
—_ Bright
2 %% Coast
_8" 500¢ &-© News
s V¥V Mobile
5 400t Foreman
o Cactus
.-go 300} Suzie
5 b
£ 200} N
E .

100t L i

8x8 12x12 16x16 20x20 24x24 28x28 32x32

Block size

Figure 8: Throughput vs block size.

o

(o))
o

+30

Dark

—_ Medium

X 90t Bright l46 ~
‘;\ Coast &,
9" 8ot News Re)
s Mobile |41 &
?) Foreman 5
g 70} 136 &
&0

E g
E 2
o =
=)

a1
(=]

+25

40 80 120

Distance (cm)

Figure 9: Decoding accuracy and throughput of
ImplicitCode vs capture distance.

Figure [7| shows that the decoding accuracy roughly in-
creases with the code block size. Figure [§| shows the
throughput vs block size. There is a clear tradeoff be-
tween the supported bit capacity and the decoding ac-
curacy. A block size of 8 x 8 yields the lowest decoding
accuracy but the highest code capacity and throughput.

Capture distance. The decoding accuracy and
throughput achieved at various capture distance is
shown in Figure [0] ImplicitCode works effectively up
to a range of 80 cm.

Performance comparison

As explained earlier, HiLiight and InFrame are two re-
cent schemes for non-intrusive barcodes, and we im-
plement both alongside the desktop decoder for Im-
plicitCode to compare their performance. All three
schemes modulate bits by changing the color intensity,
while leveraging different properties to achieve invisi-
bility. Since HiLight and InFrame each exploits one
technique for non-intrusiveness, this set of comparison
highlights the effect of combining these techniques as
opposed to adopting them individually. We do not di-
rectly compare with VR Codes, since the coding scheme
is not exactly comparable to ImplicitCode, and InFrame
is already based on VR Codes.

HiLight. In each carrier frame, the translucency of a
block is either 1 or 0.99. Over 24 frames, we obtain
different sequences of 1 and 0.99 at various block posi-
tions. The bit 0 is represented by the sequence (0.99,

SESSION: CAMERAS, CIRCUITS AND INTERFACES

HiLight
InFrame, =20
B2 InFrame, T=50

ImplicitCode

e8]

N

Flicker perception
—_

(=]

Figure 10: Perceived flicker of barcode videos.

Figure 11: Borders between blocks of different
colors remain visible in VRCodes.

1, 0.99, 1,

..., 0.99, 1), and the bit 1 by the sequence
(0.99, 0.99, 1, 0.99, 0.99, 1, ...,

0.99, 0.99, 1).

InFrame. InFrame merges contiguous pxp pixels in a
frame to form a SuperPizel, and sxs SuperPixels to form
a Block. We refer to each pair of Blocks at the same po-
sitions in two complementary frames as complementary
Blocks.

To represent 0, the two complementary Blocks do not
change their color values. To represent 1, the even-
indexed SuperPixels within the Blocks retain their orig-
inal colors; For the odd-indexed Superpixels, those
within the earlier Block have their color values sub-
tracted by a constant to become (original — delta), and
those within the later Block have their color values in-
cremented by a constant to become (original + delta).

Since the color change might be large enough to be vis-
ible, some dummy frames are also added in between
the actual complementary frames to mitigate the color
transition.

Perceived flicker. To evaluate the extent of visual
intrusiveness to human eyes, we asked 16 subjects to
watch the barcode video clips and score the quality of
these videos. We use the flicker perception metric as in
[32], which quantifies the flicker level using integers 0—
4, ranging from “no difference” to “strong flicker and
artifact”. For each video, we averaged the flicker scores
across the subjects and plot them in Figure

Overall, ImplicitCode videos exhibit less flicker than
InFrame videos. The 7 value in InFrame indicates
how much the color value changes between the corre-
sponding blocks in consecutive frames. InFrame with
7 = 50 exhibits most flicker, as the color intensity
change is abrupt, leading to noticeable block transi-

165

Table 4: Comparison of theoretical capacity

System ‘ Capacity (bits)
HiLight 2—14 f N
InFrame, 7 = 12 1—12f N
InFrame, 7 = 14 ﬁf N
ImplicitCode %f (N —n)
50
2 40
e}
S HiLight
5 30 InFrame, =20
Q. EZZ InFrame, =50
f‘o ImplicitCode
% 20
e
£ 10
HHWH‘WWH‘H’W

¥ S & N
il @& o"o Sl @0” s
Figure 12: Measured goodput of ImplicitCode
vs HiLight and InFrame.

tions and hence poor visual quality both spatially and
temporally. This is in fact a fundamental limitation of
the color fusion behavior inherited from VRCodes. Al-
though two colors can appear fused, a border between
blocks of different colors remains visible. The effect is
shown implicitly in Figure 10 of the original VRCodes
paper|34], and illustrated in Figure Instead, Implic-
itCode smoothes such transitions.

Compared to HiLight, ImplicitCode shows more flicker,
as we adopt a larger translucency change threshold in
order to boost the barcode capacity. However, HiLight
only supports static carrier images and constrains the
barcodes more than ImplicitCode.

Capacity. We can calculate the barcode capacity based
on the encoding schemes. Table [4 lists the theoretical
capacity for HiLight, InFrame, and ImplicitCode, where
f =120 fps, and N and n are the total number of blocks
per frame and per column respectively. Figure [12| com-
pares the measured goodput, with decoding accuracy
accounted for, of the three schemes from our experi-
ments, using carrier videos of the same sequence length
and the frame size’]

As per our design goal, ImplicitCode can support a
much higher capacity, 12x that of HiLight and 6 or 7x
that of InFrame. Once normalized for frame rate and
block size, ImplicitCode can embed a barcode within
every two frames of the carrier video, while 24 frames
are required for HiLight and 12 or 14 frames are needed
for InFrame, depending on the 7 value. This also means
that ImplicitCode can start decoding after collecting 2
frames, while HiLight needs to wait for 24 frames and
InFrame needs 6 or 7.

3For HiLight, the carrier video is simply a static image.

HilLight InFrame, =50
100 InFrame, =20 ImplicitCode
g% o
e :
=l
m
8 70
N & S & af
> o0 O
e;}\ %&*qo oy %Q' é\o Qo&& C/@(‘ %&

Figure 13: GOB ratio of the three schemes.

In comparison with HiLight, ImplicitCode gets a capac-
ity boost from the larger translucency change thresh-
old, which makes it possible to distinguish the color
difference between regular blocks and dimmed blocks.
We can then encode a bit in each pair of such blocks
(as seen between the corresponding blocks in our com-
plementary frames) and decode the bit by identifying
the color difference. In HiLight, the translucency only
changes by 1%, which is meant to be very close to the
original color. While this effectively hides the change,
it is not sufficient to encode a bit by itself. Therefore,
HiLight employs a longer sequence of blocks, i.e., 24,
over time to represent different bits so that they can
be accurately distinguished from one another. Decod-
ing requires an FFT over the 24 frames to recover the
sequence pattern.

On the other hand, InFrame modulates each bit using
6 or 7 spatial blocks, and therefore also encodes less
information than ImplicitCode. These 6 or 7 frames are
needed to reduce the color transition gradient between
the blocks. However, they are still not as effective as
ImplicitCode’s approach of blending block colors.

GOB ratio. InFrame considers each m x m Block a
Group of Block (GOB). If all of these Blocks are decoded
successfully, this is an available GOB. The GOB ratio
is the total GOBs divided by the number of available
GOBs, effectively showing the decoding accuracy.

Figure shows that both ImplicitCode and HiLight
can achieve a GOB ratio accuracy of over 93%, regard-
less of the carrier video. For InFrame, however, once
the carrier video contains texture, as is often seen in
standard test video sequences, the GOB ratio precision
drops dramatically. This is because, in its decoding pro-
cess, InFrame assumes that the colors of every pixel
within a Block in the carrier video frame are almost
the same, which is not the case when the carrier im-
age presents a natural scene instead of a plain color.
Therefore, InFrame cannot be universally applied to all
carrier videos.

CONCLUSION

In this paper, we explore how to design high-rate, non-
intrusive visual codes with ImplicitCode. These codes
are designed to be only visible to phone cameras but

166

UBICOMP '15, SEPTEMBER 7-11, 2015, OSAKA, JAPAN

not to the human eye. ImplicitCode joins several re-
cent efforts, especially HiLight [19], VRCodes [34], and
InFrame [32], using commodity displays and cameras.

In particular, we show that the techniques adopted in
previous work are limited when used individually. How-
ever, when combined, we can achieve a significant ca-
pacity boost of 12x over HiLight and 6x or 7x over
InFrame. Further, InFrame-encoded videos still exhibit
flicker, while ImplicitCode is hardly perceptible. More
generally, our experiments using videos of natural scenes
suggest that many complex factors affect the flicker per-
ception, the embedding efficiency, and the decoding per-
formance. It would be more effective to also incorporate
design elements leveraging other psychovisual features
and adapt to the video content. ImplicitCode shows
that combining even a few techniques from multiple di-
mensions is promising, and takes us a step closer to prac-
tical barcodes that are both high-rate and non-intrusive.

Limitations and future work

Concurrent with our work, both HiLight and In-
Frame have been refined — HiLight now embeds into
videos [20] and InFrame++ supports a higher theoreti-
cal capacity [30]. However, both incur higher decoding
errors. We will study their performance in future.

The current ImplicitCode design is still limited to
grayscale carrier video sequences and non-realtime de-
coding. However, we believe these can be addressed
with a refined design and implementation.

Support for color videos. ImplicitCode expects the
mixture of a pair of complementary frames to appear
visually indistinguishable from the original frame. This
holds for grayscale frames, because the average inten-
sity of the two complementary block colors is roughly
the same as the original. For color videos involving mul-
tiple color channels, the color mixture is more complex.
Preliminary experiments suggest that we cannot simply
apply the current technique per color channel to obtain
the ideal color mix. Further, we may need to brighten
and dim by different amounts when generating the com-
plementary frames. We will investigate in future work.

Realtime decoding is currently bottlenecked by gen-
erating individual frames from the captured video. This
is an artifact from the existing smartphone APIs rather
than our design, and will similarly affect other designs
requiring very high-rate video capture. Android phones
and iPhone 6 can only support capturing individual raw
frames up to 30 and 60 fps respectively. Only com-
pressed formats are available beyond these rates, e.g.,
at 240 fps as required by ImplicitCode, which then ne-
cessitates the slow frame generation step. This issue
would be resolved automatically if raw frame capture
becomes available at 240 fps.

ACKNOWLEDGMENT
Marco Gruteser’s participation in this work is supported
by the US National Science Foundation (NSF) under
grant CNS-1065463.

SESSION: CAMERAS, CIRCUITS AND INTERFACES

REFERENCES

1.

(2B B V]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

ISO/IEC 18004:2006. Information technology. Automatic
identification and data capture techniques. Bar code
symbology. QR Code.

. ISO/IEC 16022:2006 Information technology- Automatic

identification and data capture techniques-Data Matrix bar
code symbology specification.

. http://www.digimarc.com/products/discover/id-manager.
. Private communication with Grace Woo.
. http://research.microsoft.com/en-us/projects/hccb/.

. http://www.mathworks.com/matlabcentral/fileexchange/

30790-image-pyramidgaussian-and-laplacian/content/.

. http://www.elementaltechnologies.com/resources/

4k-test-sequences.

. M. Alghoniemy and A. Tewfik. Geometric invariance in

image watermarking. Image Processing, IEEE Transactions
on, 13(2):145-153, Feb 2004.

. C. M. Bishop. Pattern Recognition and Machine Learning

(Information Science and Statistics). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt.
Review: Digital Image Steganography: Survey and Analysis
of Current Methods. Signal Process., 90(3):727-752, Mar.
2010.

I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon. Secure
Spread Spectrum Watermarking for Multimedia. Trans.
Img. Proc., 6(12):1673-1687, Dec. 1997.

T. Hao, R. Zhou, and G. Xing. COBRA: Color Barcode
Streaming for Smartphone Systems. In Proceedings of the
10th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’12, pages 85—98. ACM,
2012.

F. Hartung and M. Kutter. Multimedia watermarking
techniques. Proceedings of the IEEE, 87(7):1079-1107, Jul
1999.

X. Hou and L. Zhang. Saliency detection: A spectral
residual approach. In Computer Vision and Pattern
Recognition, 2007. CVPR ’07. IEEE Conference on, pages
1-8, June 2007.

W. Hu, H. Gu, and Q. Pu. LightSync: Unsynchronized
Visual Communication over Screen-camera Links. In
Proceedings of the 19th Annual International Conference on
Mobile Computing E#38; Networking, MobiCom ’13, pages
15-26. ACM, 2013.

W. Hu, J. Mao, Z. Huang, Y. Xue, J. She, K. Bian, and
G. Shen. Strata: Layered coding for scalable visual
communication. In Proceedings of the 20th Annual
International Conference on Mobile Computing and
Networking, MobiCom 14, pages 79-90. ACM, 2014.

L. Itti, C. Koch, and E. Niebur. A model of saliency-based
visual attention for rapid scene analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
20(11):1254-1259, 1998.

S. Kishk and B. Javidi. Information hiding technique with
double phase encoding. Appl. Opt., 41(26):5462-5470, Sep
2002.

T. Li, C. An, A. Campbell, and X. Zhou. Hilight: Hiding
bits in pixel translucency changes. In Proceedings of the 1st
ACM MobiCom Workshop on Visible Light Communication
Systems, VLCS ’14, pages 45-50. ACM, 2014.

T. Li, C. An, X. Xjao, A. T. Campbell, and X. Zhou.
Real-time screen-camera communication behind any scene.
In Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys
’15, pages 197-211, New York, NY, USA, 2015. ACM.

167

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Q. Liu, A. H. Sung, and M. Qiao. Video steganalysis based
on the expanded markov and joint distribution on the
transform domains detecting msu stegovideo. In Proceedings
of the 2008 Seventh International Conference on Machine
Learning and Applications, ICMLA ’08, pages 671-674.
IEEE Computer Society, 2008.

O. L. Meur, P. L. Callet, and D. Barba. Predicting visual
fixations on video based on low-level visual features. Vision
Research, 47(19):2483 — 2498, 2007.

A. Mohan, G. Woo, S. Hiura, Q. Smithwick, and R. Raskar.
Bokode: Imperceptible Visual Tags for Camera Based
Interaction from a Distance. In ACM SIGGRAPH 2009
Papers, SSIGGRAPH ’09, pages 98:1-98:8. ACM, 2009.

S. D. Perli, N. Ahmed, and D. Katabi. PixNet:
Interference-free Wireless Links Using LCD-camera Pairs. In
Proceedings of the Sixzteenth Annual International
Conference on Mobile Computing and Networking,
MobiCom ’10, pages 137-148. ACM, 2010.

A. Pramila, A. Keskinarkaus, and M. Oulu. Camera based
watermark extraction - problems and examples. In In:
Proceedings of the Finnish Signal Processing Symposium
2007, 2007.

A. Pramila, A. Keskinarkaus, and T. Seppanen. Watermark
robustness in the print-cam process. In Proceedings of the
Fifth IASTED International Conference on Signal
Processing, Pattern Recognition and Applications, SPPRA
’08, pages 60—65. ACTA Press, 2008.

A. Pramila, A. Keskinarkaus, and T. Seppéanen. Reading
watermarks from printed binary images with a camera
phone. In Proceedings of the 8th International Workshop on
Digital Watermarking, IWDW °09, pages 227-240.
Springer-Verlag, 2009.

M. Rohs. Real-world interaction with camera phones. In
Proceedings of the Second International Conference on
Ubiquitous Computing Systems, UCS’04, pages 74—89,
Berlin, Heidelberg, 2004. Springer-Verlag.

P. Vartiainen, S. Chande, and K. R4mo6. Mobile Visual
Interaction: Enhancing Local Communication and
Collaboration with Visual Interactions. In Proceedings of the
5th International Conference on Mobile and Ubiquitous
Multimedia, MUM ’06, New York, NY, USA, 2006. ACM.

A. Wang, Z. Li, C. Peng, G. Shen, G. Fang, and B. Zeng.
Inframe++: Achieve simultaneous screen-human viewing
and hidden screen-camera communication. In Proceedings of
the 13th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’15, pages
181-195, New York, NY, USA, 2015. ACM.

A. Wang, S. Ma, C. Hu, J. Huai, C. Peng, and G. Shen.
Enhancing reliability to boost the throughput over
screen-camera links. In Proceedings of the 20th Annual
International Conference on Mobile Computing and
Networking, MobiCom 14, pages 41-52. ACM, 2014.

A. Wang, C. Peng, O. Zhang, G. Shen, and B. Zeng.
Inframe: Multiflexing full-frame visible communication
channel for humans and devices. In Proceedings of the 13th
ACM Workshop on Hot Topics in Networks, HotNets-XIII,
pages 23:1-23:7. ACM, 2014.

M. Weiser. Creating the invisible interface: (invited talk). In
Proceedings of the Tth Annual ACM Symposium on User
Interface Software and Technology, UIST ’94, pages 1—, New
York, NY, USA, 1994. ACM.

G. Woo, A. Lippman, and R. Raskar. Vrcodes: Unobtrusive
and active visual codes for interaction by exploiting rolling
shutter. In Proceedings of the 2012 IEEE International
Symposium on Mized and Augmented Reality (ISMAR),
ISMAR ’12, pages 59-64. IEEE Computer Society, 2012.

S. Wu and J. Xiao. Aid: Augmented information display. In
Proceedings of the 2014 ACM International Joint

Conference on Pervasive and Ubiquitous Computing,
UbiComp ’14, pages 523-527. ACM, 2014.

http://www.digimarc.com/products/discover/id-manager
http://research.microsoft.com/en-us/projects/hccb/
http://www.mathworks.com/matlabcentral/fileexchange/30790-image-pyramidgaussian-and-laplacian/content/
http://www.mathworks.com/matlabcentral/fileexchange/30790-image-pyramidgaussian-and-laplacian/content/
http://www.elementaltechnologies.com/resources/4k-test- sequences
http://www.elementaltechnologies.com/resources/4k-test- sequences

UBICOMP '15, SEPTEMBER 7-11, 2015, OSAKA, JAPAN

36. X. Wu and G. Zhai. Temporal Psychovisual Modulation: A
New Paradigm of Information Display [Exploratory DSP].
Signal Processing Magazine, IEEFE, 30(1):136-141, Jan 2013.

168

	Introduction
	Background and motivation
	Related work
	Cause of intrusiveness
	Challenges in hiding barcodes
	Existing techniques for hiding barcodes

	System design
	Overview
	Modulating bits
	Smoothing code block transitions
	Decoding

	ImplicitCode Implementation
	Encoder
	Decoder

	Performance
	Overall setup
	Microbenchmarks
	Performance comparison

	Conclusion
	Limitations and future work

	Acknowledgment
	REFERENCES

