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A LOW-COST WI-FI–BASED 
SOLUTION FOR MEASURING 
HUMAN QUEUES
Creating devices or systems that can leverage computationally rich 
environments to support day-to-day interactions between humans and 
computers is the goal of mobile computing and communication. The 
increasing use of mobile devices and their data-intensive apps has generated 
extensive opportunities to monitor and optimize real-world processes 
through network traffic and corresponding characteristics. For example, 
research has already shown that we can use cellular call data records and 
signal traces to understand patterns of large-scale transportation [1] and 
the level of congestion on roadways [2], respectively. Likewise, ubiquitous 
wireless infrastructures (e.g., Wi-Fi and Bluetooth) not only provide 
convenience in communication, but also enable novel applications, such as 
indoor localization and user authentication. In addition, we have found that 
the strength of wireless signals from the Wi-Fi traffic consumed by mobile 
devices can be utilized to perform fine-grained monitoring on a daily 
common process, i.e., human queues.
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Human queues are usually formed by 
people who are waiting for services 
in long lines. Such familiar and 

frustrating occurrences often happen at 
retail stores, banks, theme parks, hospitals, 
and transportation stations. Based on our 
findings, we have proposed a novel solution 
for estimating the wait time of human 
queues by leveraging the existing Wi-Fi 
infrastructures and traffic from the mobile 
devices used by people waiting in the queues. 
The biggest advantage of our Wi-Fi based 
solution is that it can work with complicated 
queue patterns under various real-world 
scenarios without deploying a specialized 
infrastructure or incurring manpower 
overhead. Furthermore, our solution can 
accurately estimate the wait time of human Ph
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queues based on the Wi-Fi traffic consumed 
by a small fraction of people in line.

MEASURING HUMAN QUEUES
A typical human queue process contains 
three important time periods: 1) the waiting 
period spans between the time of arrival 
and receipt of service; 2) the service period 
is the time for service related activities, 
such as paying for services, accepting 
treatments, and waiting for items; 3) the 
leaving period is the time during which 
people exit the queue. We note that our 
concept of human queues are loosely 
defined, people in queues are not restricted 
to be in a line but could flexibly stay in a 
waiting room, and they might not be served 
in a strict first-in first-out order.

Real-time quantification of the waiting 
and service periods are the key information 
to optimize the process of human queues in 
various industries. For example, a manager 
in a coffee shop may want to change the 
staffing to use skillful baristas as opposed to 
simply adding staff, when the waiting period 
grows longer due to increased demands for 
espresso drinks compared to other items. 
Similarly, a hospital emergency department 
might want to arrange experienced nursing 
staff to help with triage when waiting times 
for patients become too long. The security 
departments at airports could assign skillful 
screeners to checkpoints experiencing 
abnormally long delays to reduce service and 
wait times of the queue. 

In addition, not only service providers but 
customers can also benefit from complete 
queue measurements. For example, knowing 
when customer lines in banks are expected 
to be shorter could help a customer to adjust 
his/her agenda. Visitors in a Walt Disney 
World Theme Park may reschedule their 
trips based on the timely report of the queue 
length at each attraction to make full use of 
their limited visiting period.

In order to obtain the measurements 
of human queues, existing solutions have 
utilized cameras [3], special sensors (such 
as infrared [4] or floor-mat sensors [5]), and 
Bluetooth monitors [6]. However, cameras 
always have issues with public privacy, and 
special sensors even Bluetooth monitors 
usually require multiple devices at different 
locations to fully monitor a long queue, 
which involves extra installation and system 
costs. Moreover, these solutions yet are too 
coarse-grained to differentiate between the 
waiting and service time with single device.

A LOW-COST APPROACH 
LEVERAGING WI-FI SIGNAL
We have found that, by using a single Wi-Fi 
monitor at the end of a human queue, the 
received signal strength of Wi-Fi packets 
sent by mobile devices in the queue has a 
unique pattern corresponding to the distance 
between the mobile devices and the Wi-Fi 
monitor, which can be utilized for measuring 
human queue. By intuition, the received 
signal strength slowly increases when a user 
moves toward the service point with his/her 
mobile device during the waiting period. 
When the person starts to receive the service, 
the signal strength should be the strongest 

and keep stable for the entire service period. 
Finally, after receiving the service, the 
received signal strength dramatically drops as 
the person exits the queue and moves away 
from the service point. 

Figure 1 presents the received signal 
strength (RSS) trace of a smartphone in 
a queue collected from a single Wi-Fi 
monitor at the service desk in a coffee 
shop. The captured RSS trace reflects the 
aforementioned pattern of the distance 
between the mobile device user and the 
Wi-Fi monitor placed at the service desk. 
We foresee that such Wi-Fi monitor can be 
integrated with Wi-Fi access points that are 
already popular in retail stores, hospitals, 
banks, and transportation stations.

Implementation Challenges
Because the multipath, shadowing, and 
fading effects to a wireless signal are 
dynamic due to the movements of the 
wireless device and changing environments, 
it is a very challenging task to accurately 
identify the time points of the start and the 
end of the service. We hereby summarize 
the major challenges to implement our 
system as follows.

Tracking queues with a low-infrastructure 
approach. Our approach only requires a 
single Wi-Fi monitor at the end of the queue, 
which cannot uniquely determine the mobile 
users’ positions. Thus our low-infrastructure 
solution should be independent of localizing 
mobile devices, and only estimate the 
parameters of the queue based on the 
unique signal patterns presented in the 
mobile devices’ Wi-Fi traffic. 

Embracing noisy real environments.  
Even though the distance between the 
mobile device and the Wi-Fi monitor 
dominates the received signal, the RSS 
is still far from stable in typical indoor 
environments. The RSS is really noisy 
mainly because it is affected by various 
factors, including user movements, holding 
styles, vibrations of mobile devices, 
changing surrounding obstacles, signal 
interferences, and multi-path effects 
(Rayleigh fading). In addition, the RSS of 
Wi-Fi signal is significantly attenuated by 
human bodies in queues. Thus, our system 
should be designed to cope with noisy 
signal readings using practical approaches.
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Identifying queue-related signal traces. 
The received Wi-Fi signal traces from 
mobile devices may contain RSS trends 
similar to that related to queue process. In 
order to automate our queue measuring 
solution, an effective data-calibration 
mechanism is required to identify the 
segment of the RSS trace including only the 
important time periods of the queue process.

System Overview
Figure 2 shows the flow of our system. 
There are three main subtasks in our 
system: data calibration, integration of 
multiple antennas, and queue parameter 
determination. Our system starts to 
collect the RSS measurements from a 
mobile device when the Wi-Fi monitor 
discovers that the mobile device enters 
the queue. The collected RSS trace is 
first processed by the data calibration, 
which simultaneously removes high 
frequency noise in the RSS measurements 
and preserves the unique signal pattern 
embedded in the raw RSS trace. Then the 
system further identifies the segment of 
RSS measurements that contains queue 
related time periods.

Next, our system integrates RSS 
measurements from multiple antennas 
to filter out signal outliers and obtain a 
reliable Wi-Fi signal trace. Based on the 
fact that many commercial Wi-Fi access 
points are already equipped with two or 
more antennas, we design the subtask that 
combines the selected RSS traces from two 
antennas in the Wi-Fi monitor to generate a 
new signal trace, which fortifies the unique 
signal pattern associated with important 
time periods of a human queue process.

Finally, the queue parameter determi-
nation implements a Bayesian Network 
scheme based on unique queue-related 
features to infer the critical time points that 
separate the waiting, service, and leaving 
periods. The critical time points, namely 
the beginning of service (BoS), leaving 
point (LP), and end of leaving (EoL), are 
used to estimate the queue parameters, 
including the length of waiting and service 
periods. In particular, our system utilizes 
the BoS and the starting time of the trace 
to estimate the waiting period; whereas the 
service period is the time interval between 
the BoS and LP, and the leaving period is 
the time interval between the LP and EoL. 

BAYESIAN NETWORK–BASED 
MECHANISM
We developed a Bayesian Network scheme 
for our system to identify the critical 
time points in a human. In particular, we 
identified three features extracted from the 
RSS trace associated with the leaving period 
as illustrated in Figure 1:

•	 the leaving period has the longest 
consecutive negative-slope segments of 
the selected RSS trace;

•	 the received signals before the leaving 

period are stable with the highest 
amplitude of the selected RSS trace; and

•	 the leaving period experiences the largest 
decrease of the signal in the selected RSS 
trace.

The Bayesian Network scheme first 
identifies all the RSS segments containing 
continuous positive or negative RSS slopes 
in the RSS trace, and uses them as inputs 
to run BoS and LP estimation using a naive 
Bayesian classifier. Specifically, we modelled 
BoS and LP as two parent nodes in the 
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Figure 2. Flow overview of our queue-monitoring system.

Figure 1. Illustration of the unique distance-related pattern extracted from the Wi-Fi signal 
strength of a smartphone observed by a monitor at the end of the queue.
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Bayesian Network and define six child 
variables (Boolean random variables) based 
on the aforementioned features embedded 
in the RSS trace when the mobile device is 
used in a queue:

• 	R: The average RSS within the service 
period is usually the highest. R = 1 when 
the mean RSS before a specific segment of 
continuous negative slopes is the highest 
of all, otherwise R = 0. 

• 	S: The RSS within the service period is 
stable. S = 1 when the variation of RSS 
within a window W before a segment of 
continuous negative slopes is smaller than 
a threshold _, otherwise S = 0.

• 	LLP: The leaving period happens after the 
service period, which has the strongest 
RSS. LLP = 1 when the starting time of a 
specific segment of continuous negative 
slopes is later than the time with the 
highest RSS value, otherwise LLP = 0.

• 	CLP: The change of RSS after the 
leaving period usually exhibits the most 
significant decreasing trend. CLP = 1 
when the average slope of a specific 
segment of continuous negative slopes is 
the smallest of all, otherwise CLP = 0.

• 	LBoS: The waiting period happens 
before the service period, which has the 
strongest RSS. LBoS = 1 when the end 
time of a specific segment of continuous 
positive slopes is earlier than the time 
with the highest RSS, otherwise LBoS = 0.

• 	CBoS: The change of RSS before the 
service period usually exhibits the most 
significant increasing trend. CBoS = 
1 when the average slope of a specific 
segment of continuous positive slopes is 
the largest of all, otherwise CBoS = 0.

The naive Bayesian classifier examines 
the ending time of each input segment 
with continuously positive slopes and 
considers the ending time to be a BoS 
when the segment maximizes the posterior 
probability under the condition of BoS. 
Similarly the classifier examines the 
starting time of each input segment with 
continuously negative slope and considers 
the starting time to be a LP. 

EVALUATION
To understand whether there are sufficient 
Wi-Fi users in human queues to facilitate 
queue measurements, we investigated the 
density of mobile devices that use WiFi in 
a coffee shop for one month. We placed 
a Wi-Fi monitor close to the service desk 
to passively monitor Wi-Fi packets sent 
by surrounding mobile devices, and an 
empirical threshold (-45dBm) is used 
to determine whether a mobile device is 
within the queue. We found that more than 
30 percent of customers were using Wi-Fi 
service while waiting in line for coffee, 
which indicates that it is feasible to leverage 

Wi-Fi traffic from mobile devices used in 
the queue for human queue measurements.

We further respectively collected 72 and 
54 RSS traces in two real environments, 
a coffee shop and an airport over one 
month, with volunteers holding different 
types of smartphones in the queues. The 
smartphones we used in the experiments 
span the HTC 3D, HTC EVO 4G, and 
Nexus One. When using the Bayesian 
Network scheme, our system provides 
consistently low estimation errors in both 
environments: the LP and BoS estimation 
errors are less than 8s for both the coffee 
shop and airport. Whereas the waiting 
and service times estimation achieves 
low average errors less than 8s in coffee 
shop and about 5s and 10s in the airport, 
respectively. The standard deviation of 
estimation errors in both environments 
is around 3s to 7s. This indicates that our 
system is effective in measuring human 
queues with high accuracy using only a 
single-point Wi-Fi signal monitor and a 
sample of phones in the queue.

As a conclusion, we designed a low-
infrastructure system for measuring 
human queues, which could enable a wide 
range of applications including bottleneck 
analysis, shift assignments, and dynamic 
workflow scheduling. We foresee that 
the Wi-Fi-based solution for real-time 
human queue monitoring will quickly 
emerge along with the improvements 
of its accuracy, compatibility, and 
security. Compared to the approaches 
using cameras or special sensors, our 
system could provide accurate real-time 
measurements of human queues by 
leveraging existing Wi-Fi access points 
without adding one single additional 
monitoring device. n
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Figure 3. Experimental evaluation in real environments: (a) the coffee shop environment 
(b) and the airport environment.
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