
Augmented Vehicular Reality: Enabling Extended Vision for
Future Vehicles

Hang Qiu
University of Southern California

Fawad Ahmad
University of Southern California

Ramesh Govindan
University of Southern California

Marco Gruteser
Rutgers University

Fan Bai
General Motors Research

Gorkem Kar
Rutgers University

ABSTRACT
Like today’s autonomous vehicle prototypes, vehicles in the future
will have rich sensors to map and identify objects in the environment.
For example, many autonomous vehicle prototypes today come
with line-of-sight depth perception sensors like 3D cameras. These
cameras are used for improving vehicular safety in autonomous
driving, but have fundamentally limited visibility due to occlusions,
sensing range, and extreme weather and lighting conditions. To
improve visibility and performance, not just for autonomous vehicles
but for other Advanced Driving Assistance Systems (ADAS), we
explore a capability called Augmented Vehicular Reality (AVR).
AVR broadens the vehicle’s visual horizon by enabling it to share
visual information with other nearby vehicles, but requires careful
techniques to align coordinate frames of reference, and to detect
dynamic objects. Preliminary evaluations hint at the feasibility of
AVR and also highlight research challenges in achieving AVR’s
potential to improve autonomous vehicles and ADAS.

CCS CONCEPTS
•Networks→ Cyber-physical networks; •Computer systems or-
ganization→ Special purpose systems;

KEYWORDS
Autonomous Cars, ADAS, Collaborative Sensing, Extended Vision

ACM Reference format:
Hang Qiu, Fawad Ahmad, Ramesh Govindan, Marco Gruteser, Fan Bai,
and Gorkem Kar. 2017. Augmented Vehicular Reality: Enabling Extended
Vision for Future Vehicles. In Proceedings of Intl. Workshop on Mobile
Computing Systems and Applications, Sonoma, CA, USA, February 21-22,
2017 (HotMobile ’17), 6 pages.
DOI: http://dx.doi.org/10.1145/3032970.3032976

1 INTRODUCTION
Autonomous cars are becoming a reality, but have to demonstrate
reliability in the face of environmental uncertainty. A human driver
can achieve, on average, ~100 million miles in between fatalities, and

This work is supported in part by the US National Science Foundation under grant
number CNS-1329939 and by a grant from General Motors.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotMobile ’17, Sonoma, CA, USA
© 2017 ACM. 978-1-4503-4907-9/17/02. . . $15.00
DOI: http://dx.doi.org/10.1145/3032970.3032976

users will expect self-driving vehicles, and other advanced driving
systems, to significantly outperform human reliability. Most of these
technologies use advanced sensors for depth perception, and these
sensors can be used to recognize objects and other hazards in the
environment that may cause accidents.

To improve the system performance, it will be necessary to over-
come the limitations of these sensors (§2). Most autonomous ve-
hicles or ADAS technologies are equipped with depth perception
sensors as well as cameras for semantic level perception. Besides
limited sensing range, they all require line-of-sight visibility. How-
ever, achieving higher reliability will likely require appropriate han-
dling of situations where (a) a vehicle’s sensors cannot detect other
traffic participants because line-of-sight availability does not exist,
or (b) their range is impaired by extreme weather conditions, lighting
conditions, sensor failures, etc.. In some of these cases, even human
vision cannot recognize hazards in time.

In this paper, we explore the feasibility of communicating and
merging visual information between nearby cars. This would aug-
ment vehicular visibility into hazards, and enable autonomous ve-
hicles improve perception under challenging scenarios, or ADAS
technologies to guide human users in making proper driving deci-
sions. This capability, which we call Augmented Vehicular Reality
(AVR), aims to combine emerging vision technologies that are being
developed specifically for vehicles [4], together with off-the-shelf
communication technologies.

Our preliminary design of AVR (§3) explores the use of stereo
cameras, which can, with their depth perception, generate instanta-
neous 3-D views of the surroundings in a coordinate frame relative
to the camera. Before it can share these instantaneous views be-
tween cars, AVR must solve three problems: how to find a common
coordinate frame of reference between two cars; how to resolve
perspective differences between the communicating cars; and how to
minimize the communication bandwidth and latency for transferring
3-D views. To this end, we have developed novel techniques to local-
ize a vehicle using sparse 3-D feature maps of the static environment
crowd-sourced from other cars, to perform 3-D perspective transfor-
mations of the views of the cars, and to detect moving objects (as to
minimize the visual information exchanged between vehicles).

In our preliminary evaluation, we demonstrate that these technolo-
gies can actually help extend the vision of neighboring vehicles (§4),
and we quantify some of the bandwidth and latency costs of AVR.
Much work remains in making AVR practical, including optimizing
its vision processing pipeline, and aggressively reducing the band-
width and latency by leveraging techniques such as compression and
motion prediction. Our design builds on prior work in localization

HotMobile ’17, February 21-22, 2017, Sonoma, CA, USA H. Qiu et. al.

and scene matching (§6), but, to our knowledge, no one has explored
this novel, and important, capability.

2 BACKGROUND, MOTIVATION AND
CHALLENGES

Sensing Capabilities in Future Cars. A crucial component of
an autonomous car is a 3D sensing capability that provides depth
perception of a car’s surroundings. Modern autonomous vehicle
prototype mainly rely on a rich variety of accurate perception sensors,
including advanced multi-beam LiDar, radar, long-range ultrasonic
and forward-facing or surrounding-view camera sensors, to detect
and track moving objects while producing a high-definition (HD)
map for localization [28][29]. This HD map makes the car aware
of its surroundings: i.e., where is the curb, what is the height of the
traffic light, etc., and is able to provide sub-meter-level mapping and
localization accuracy. Recent research in autonomous driving [1]
[2] [3] has leveraged some of these advanced sensors to improve
perception.

Abstractly, regardless of the details, this collection of sensors,
generates successive point clouds, each of which represents the
instantaneous 3D view of the environment. A point in the point
cloud represents a voxel in the 3D space, and is associated with
a position in 3-D and possibly a color attribute depending on the
sensor used. For example, the 64-beam Velodyne LiDAR can collect
point clouds at 10 Hz containing a total of 2.2 million points each
second encompassing a 360°view. In this paper, we focus on stereo
cameras, which can collect point clouds at faster rates (60 Hz) with
over 55 million points per second, but with a limited field of view
(110°).

The Problem. Most of these sensors only provide line-of-sight
perception (e.g., LiDar, Radar, (stereo) camera and Infrared sensors)
and obstacles can often block a vehicle’s sensing range. Moreover,
the effective sensing range of these sensors is often limited by dif-
ferent weather conditions (e.g., fog, rain, snow, etc.) or lighting
conditions [26][14]. In this paper, we explore the feasibility of a
simple idea: extending the visual range of vehicles through commu-
nication. We use the term Augmented Vehicular Reality (AVR) to
denote the capability that embodies this idea.

AVR can be helpful in many settings. For example, consider
a very simple platoon of two cars, a leader, and a follower. The
leader can communicate, to the follower, those objects (e.g. stop
signs, crosswalks, potholes, pedestrians) in its visual range that
the follower is unlikely to be able to see, either because the leader
obstructs the follower’s view, or because the objects are beyond
the follower’s range. The human or autonomous driving system
in the follower’s car can use this information to make safe driving
decisions. Specific examples include buses that occlude children
crossing at a crosswalk, or trucks that occlude a left-turning vehicle’s
view of approaching cars.

AVR can also extend a vehicular vision over larger spatial regions,
or over time. Today, for example, navigation apps like Waze warn
users of hazards like parked cars on the shoulder, police vehicles,
or objects on the road. An AVR capability across vehicles can
potentially provide more accurate information (today’s navigation
apps rely on crowdsourcing, and their accuracy is spotty), together

Figure 1—Single Vehicle View of Point Cloud

with precise positions of these hazards. Finally, AVR can also be
used to augment HD maps to include temporary features in the
environment like lane closures or other construction activity.

Challenges. An AVR capability poses several fundamental chal-
lenges, some of which we discuss in this paper, and others that we
defer to future work §5.

First, for AVR, each vehicle needs to transform the view received
from the other vehicles into its own view. To be able to do this
very accurately, this perspective transformation needs both the exact
position of the sensor (LiDar, camera, etc.) and the orientation
at a high resolution, which can pose new challenges to current
localization systems.

Second, the high volume of data generated by the sensors can
easily overwhelm the capabilities of most existing or future wire-
less communication systems. Fortunately, successive point clouds
contain significant redundancies. For example, static objects in
the environment may, in most cases, not need to be communicated
between vehicles, because they may already be available in precom-
puted HD maps stored onboard. Realizing AVR in the short term
hinges on our ability to be able to isolate dynamic objects of interest
for sharing between vehicles.

Finally, AVR needs to have an extremely low end to end latency
in order to achieve real-time extended vision. Thus, it requires fast
object extraction, low communication latency, and fast perspective
transformation and merging processing. With the advent of special-
ized vision systems for vehicles [4], the latency of some of these
steps is approaching the realm of feasibility, but low latency commu-
nication will remain a challenge. Finally, AVR requires tight time
synchronization between sender and receiver in order to correctly
position views received from other vehicles over time.

3 AVR DESIGN
AVR creates an extended 3D map, updated in real-time, of a ve-
hicle’s surroundings regardless of any line-of-sight occlusions or
sensing range limitations. With the help of several state-of-the-art
enabling technologies, AVR leverages a crowd-sourced sparse HD
map to enable vehicles to position themselves relative to each other,
by positioning themselves relative to the same static objects in the
environment. It utilizes wireless communication to share vehicle
views among other vehicles so that each of them is aware of not only
the exact position but also the surroundings of its neighbor. To mini-
mize the communication overhead, AVR shares only moving objects
by carefully analyzing the motion of the objects in the environment.

Augmented Vehicular Reality HotMobile ’17, February 21-22, 2017, Sonoma, CA, USA

Figure 2—Feature Detection and 3D Matching

Specifically, AVR works as follows. Each vehicle continuously
captures point clouds and, using a pre-computed sparse HD map
containing features of static objects in the environment, localizes
itself in a coordinate frame relative to the camera that captured the
sparse HD map. Meanwhile, each vehicle also isolates point cloud of
dynamic objects in the environment, and transmits these to vehicles
nearby, either using V2V technologies, or using road-side or cloud
infrastructure as an intermediary. Other vehicles can also position
themselves in the same relative coordinate frame of reference, so,
when they receive point clouds from other vehicles, they can merge
these into their own camera’s reference frame. Before doing so, they
must do a perspective transformation that accounts for perspective
differences between the two vehicles.

Since we are exploring the feasibility, our initial exploration
of AVR uses an inexpensive (2 orders of magnitude cheaper than
high-end LiDAR devices) off-the-shelf stereo camera, together with
processing software that analyzes concurrent frames from the two
cameras to determine the point cloud. Specifically, by analyzing
the disparity between the left and right camera, the software can
determine the 3D coordinate of each voxel, relative to the camera’s
coordinate frame of reference. Figure 1 shows the point cloud gener-
ated by the stereo camera while cruising on our campus. In addition
to resolving the depth of the surroundings, AVR also incorporates
a state-of-the-art object recognition framework [25]. Trained on a
vehicular scenario, the framework detects interesting objects, i.e.,
cars, pedestrians, etc., and localizes and draws a 2D bounding box
on the frame. In summary, each vehicle can continuously generate
the location, and the type of the surrounding objects.

In theory, AVR can share information at several levels of granu-
larity between vehicles: the entire point cloud at each instant, the
point cloud representing some subset of objects in the environment,
the object detected in a two-dimensional view, or the label (type) of
object. These are in decreasing order of communication complexity,
and we evaluate these later in §4.

3.1 Localization using Sparse 3-D Feature Maps
To solve the problem of localizing one vehicle with respect to an-
other, AVR leverages prior work in stereo-vision based simultaneous
localization and mapping (SLAM, [23]). This work generates sparse
3-D features of the environment, where each feature is associated
with a precise position. AVR uses this capability in the following
way. Suppose car A drives through a street, and computes the 3-D
features of the environment using its stereo vision camera. These
3-D features contribute to a static map of the environment. Another

Figure 3—Crowdsourcing static HD map

car, B, if it has this static map, can use this idea in reverse: it can
determine 3-D features using its stereo camera, then position those
features in car A’s coordinate frame of reference by matching the
features, thereby enabling it to track its own camera’s position. A
third car, C, which also shares A’s map, can position itself also in
A’s coordinate frame of reference. Thus, B and C can each position
themselves in a consistent frame of reference, so that B can correctly
overlay C’s shared view over its own.

In AVR, this idea works as follows. As a car traverses a street,
all stable features on the street, from the buildings, the traffic signs,
the sidewalks, etc., are recorded, together with their coordinates,
as if the camera were doing a 3D scan of the street. A feature
is considered stable only when its absolute world 3D coordinates
remain at the same position (within a noise threshold) across a
series of consecutive frames. Figure 2 shows the features detected
in an example frame. Each green dot represents a stable feature.
Therefore, features from moving objects, such as the passing car on
the left in (Figure 2), would not be matched or recorded.

Each car can then crowd-source its collected map. We have left to
future work the mechanisms for this crowd-sourcing; even though it
is relatively sparse, this map is still voluminous and is not amenable
to real-time crowd-sourcing. However, it is relatively straightforward
to stitch together crowd-sourced segments from two different cars,
so that a consistent 3-D map can be built. Suppose car A traverses
one segment of street X; car B can traverse that same segment of X,
then upload a 3-D map of a traversal of a perpendicular street Y by
placing Y’s 3-D map in the same coordinate frame as X’s. Figure 3
shows the static HD map created and the localized camera positions
as it travels. Each black dot is a stored feature, whereas the red dots
are those that are currently active for feature matching.

AVR needs only one traversal to collect features sufficient for a
map since these features represent static objects in the environment.
The amount of data needed for each road segment depends on the
complexity of the environment. As an example, AVR creates 97MB
of features for a 0.1 mile stretch of a road on our campus.

3.2 Extending Vehicular Vision
With the help of a common coordinate frame, vehicles are able to
precisely localize themselves (more precisely, their cameras), both
in 3D position and orientation, with respect to other vehicles easily.
However, if car A wants to share its point cloud (or objects in it)

HotMobile ’17, February 21-22, 2017, Sonoma, CA, USA H. Qiu et. al.

Figure 4—Finding the Homography of the Current Frame in the Previous Frame using
SURF Features

with car B, AVR needs to transform the objects or point cloud in A’s
local view to B’s. Vehicles can have very different perspectives of
the world depending on the location and orientation of their sensors
and point clouds are generated in the local coordinate frame. In this
section, we describe how AVR performs perspective transformations
between the local and global coordinate frames.

Consider two views from two different vehicles. AVR introduces
the common coordinate frame to bridge the gap between the two
perspectives. Specifically, the camera pose in the common frame
is represented by a transformation matrix, T cw, as shown in Equa-
tion (1), which includes a 3 x 3 rotation matrix and a 3 element
translation vector.

T cw =

RotX.x RotY.x RotZ.x T ranslation.x
RotX.y RotY.y RotZ.y T ranslation.y
RotX.z RotY.z RotZ.z T ranslation.z

0 0 0 1

 (1)

The translation is equivalent to the camera coordinate in the
common frame, and the rotation matrix indicates the rotation of
the camera coordinate frame against the common coordinate frame.
Therefore, transforming a voxel in the camera (c) domain point
cloud (V = [x, y, z, 1]T) to a voxel in the world (w) domain (V ′ =
[x′, y′, z′, 1]T) follows Equation (2):x′

y′

z′

1

 = T cw ∗

x
y
z
1

 (2)

Assuming camera A has a pose of T aw, and camera B has a pose
of T bw, similarly, transforming a voxel Va from camera A to Xb in
camera B follows Equation (3).

Vb = T bw−1 ∗ T aw ∗ Va (3)

3.3 Detecting and Isolating Dynamic Objects
Transferring and transforming the full point cloud of a vehicle’s
surroundings is infeasible given the constraints of today’s wireless
technologies. In this section, we explore whether it is possible to
isolate only dynamic objects in the environment. A simple way to
do this is to analyze the motion of each voxel in successive frames.
Unfortunately, it is a non-trivial task to match two voxels among
consecutive frames. Prior point cloud matching techniques [18, 22]
involve heavy computation unsuitable for real-time applications.

AVR exploits the fact that its cameras capture video, and uses
2D feature matching to match 3-D voxels: in earlier steps of our
computation, we compute the correspondence between pixels and
voxels, details omitted, and in this step, we use this information.

Figure 5—ZED Stereo Camera
Figure 6—ZED Mounted on top of the
Windshield with Smartphone Attached

AVR extracts SURF features for matching and finds the homogra-
phy transformation matrix between two neighboring frames. Specif-
ically, it tries to find the position of the current frame in the last
frame. The intuition behind this is that vehicles usually move for-
ward and the last frame often captures more of the scene than the
current frame (Figure 4). Similar to the perspective transformation
matrix discussed above (§3.2), the homography matrix H , which
is in 2D, can transform one pixel (P = [x, y]T) to the same pixel
(P ′ = [x′y′]T) in the last frame with a different location. This pixel
matching can be used to match corresponding voxels in the point
cloud. Then, thresholding the Euclidean distance between matching
voxels from consecutive frames can isolate the dynamic points from
the static ones. Note that before calculating the displacement, the
matching voxels should be transformed into the same coordinate
frame, either the last frame or the current frame, following Equa-
tion (2). In our initial experiments, AVR can successfully filter out
all stationary objects, and extract only the moving objects in the
scene. With the vehicle cruising at 20mph, the stereo camera record-
ing at 30fps, the average displacement of the stationary voxels is
< 5cm per frame.

One optimization we have experimented with is to exploit ob-
ject detectors [25] to narrow the space for moving objects (cars,
pedestrians). Once we have identified the pixels associated with
these moving objects, we can determine if the corresponding voxels
are moving, thereby reducing the search space for moving objects.
We evaluate how much bandwidth this optimization can save in the
following section §4.

4 PRELIMINARY EVALUATION

Experimental Setup. We experiment and evaluate AVR on two
cars, each equipped with one ZED [5] (Figure 5) stereo camera
mounted on the top of the front windshield and a smartphone at-
tached to it (Figure 6). The stereo camera records the video stream
and computes the 3D point cloud as well as depth information,
while the mobile phone records GPS and all motion sensors, i.e.,
gyroscope, accelerometer, magnetometer, etc.. ZED can create the
real-time point cloud at a framerate of 30fps on a Titan X GPU
with a resolution of 720P (1280 x 720), and up to 100 fps with
VGA (640 x 480). For object recognition, AVR uses YOLO [25],
a state-of-the-art object detector. For the SLAM algorithm, AVR
uses ORB-SLAM2 [23], currently the highest ranked open source
visual odometry algorithm on KITTI benchmark, a widely accepted
vehicle vision benchmark. Using ORB-SLAM2, we have collected
several traces on and around campus with one car following the other
to both collect the sparse maps and to achieve extended vehicular
vision.

Augmented Vehicular Reality HotMobile ’17, February 21-22, 2017, Sonoma, CA, USA

Figure 7—Point Cloud of Leader Figure 8—Point Cloud of Follower Figure 9—Extended Point Cloud

VGA
(640 x 480)

720P
(1280 x 720)

1080P
(1920 x 1080)

Full 4.91 MB 14.75 MB 33.18 MB
Dynamic 0.79 MB 2.36 MB 5.30 MB

Object 0.33 MB 0.98 MB 2.21 MB
Labels 0.05 MB 0.05 MB 0.05 MB

Table 1—Point Cloud Data Size Per Frame.

Results: Extended Vision. Figure 7 shows the point cloud view1

of the leader, where there is FedEx truck parked on the left and a
segment of sidewalk on the right. Figure 8 shows the perspective
of the follower where a white sedan is parked on the left. Note that
neither the FedEx truck or the extension of the sidewalk can be fully
observed due to the limited sensing range of the ZED stereo camera.
Figure 9 shows the extended view of the follower car, where the
point cloud of both the FedEx and the sidewalk, obtained from the
leader, can be perfectly merged into the follower’s perspective.

Results: Bandwidth and Latency. Table 1 summarizes the band-
width requirement of transferring different representations of vehicle
surroundings with various granularities. Specifically, we consider
the following four representations. The most fine-grained form is
the full point cloud where the car can share everything it sees with
other cars (Full). A more lightweight representation is the voxels
belonging to dynamic objects (Dynamic). A comparably lightweight
includes point clouds belonging to the objects detected by YOLO
(Objects). The most coarse-grained form is the 3D bounding box
and the label of the object (Label). The numbers in the table are the
average point cloud data sizes evaluated over campus cruising traces
with multiple moving vehicles in the scene.

AVR can potentially share these representations either via direct
V2V communication, or indirectly through the road side units or
the cloud. However, existing state-of-the-art wireless communica-
tion technologies cannot support any representation except coarse
labels. Theoretically, DSRC / 802.11p [6] can achieve 3-27 Mbps,
depending on modulation and error correction coding (ECC) rate.
Both WiFi-direct (802.11n/ac) and LTE/LTE-direct [7] can achieve
up to 300Mbps. To explore the transmission overhead in practice,
we establish both a peer-to-peer (P2P) WiFi direct link and a server
for LTE transmission over cloud, to measure the performance of
point cloud transfer. Figure 10 shows the mean and variance of the
throughput and latency for different point cloud sizes. As expected,
the throughput generally increases as the file size increases because
it allows the TCP congestion window to open up fully and utilize

1In a standard openGL 3D viewer, users can rotate and zoom the point cloud to view
different perspective. The paper only shows one vehicle perspective of the point cloud.

10
-2

10
-1

10
0

10
1

10
2

Point Cloud Size (MB)

0

5

10

15

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

s
e
c
o
n
d
s
)

0

20

40

60

80

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t
(M

b
p
s
)

Latency(WiFi-Direct)

Latency(LTE)

Throughput(WiFi-Direct)

Throughput(LTE)

Figure 10—Throughput and Latency of Point Cloud Transmission

more bandwidth. The peak throughput reaches 60 Mbps after trans-
mitting over 50 MB. What’s interesting is that as we decrease the
point cloud size in log scale, the latency drops only linearly. Clearly,
for anything but labels, the latency of V2V communication is still
inadequate, and we plan to explore this dimension in the future.

In terms of processing overhead, AVR executes two major compo-
nents at runtime: localization and point cloud manipulation. ORB-
SLAM requires 0.06sec per frame. The total point cloud manip-
ulation time, including perspective transformation, merging, and
3D rendering, is on average 1.337sec per view. Our current imple-
mentation uses the CPU for this task. We plan to further optimize
the computation using GPU for both localization and point cloud
manipulation to accelerate the processing speed.

5 REMAINING CHALLENGES AND FUTURE
WORK

We see several directions of future work. The first is to try to lever-
age other techniques adopted in latency sensitive applications [9, 11]
like gaming and interactive VR, such as dead reckoning or motion
prediction. Leveraging the trajectory of the vehicle, information
from maps, and the constraints on pedestrians, we might be able to
correctly predict motion over short time scales. Receivers can use
these trajectories to update their local views, re-synchronizing occa-
sionally. While compensating for latency, these kinds of techniques
can also reduce bandwidth significantly. In addition, we also plan
to explore advanced voxel compression techniques to address the
bandwidth bottleneck. Further, we have developed our AVR proto-
type in a modular fashion, and plan to explore using other sensors
such as LiDAR that can generate 3-D point clouds (in theory, the
AVR framework should translate directly to these sensors), and more
advanced object detection frameworks [10]. Finally, future work
will need to address security and privacy concerns that may arise
from communicating visual information between vehicles.

HotMobile ’17, February 21-22, 2017, Sonoma, CA, USA H. Qiu et. al.

6 RELATED WORK
Prior research has explored position enhancement using differential
GPS [15], inertial sensors on a smartphone [8, 16], onboard vehi-
cle sensors [19], and WiFi and cellular signals [27]. Visual SLAM
techniques have used monocular cameras [12], stereo camera [13],
and lidar [17]. Kinect [24] can also produce high-quality 3D scan of
an indoor environment using infrared. By contrast, AVR positions
of vehicles in a common coordinate frame of reference using fea-
tures computed by a visual SLAM technique. While autonomous
driving is becoming a reality [1, 2], and ADAS systems such as
lane maintenance and adaptive cruise control are already available in
many cars, we are unaware of efforts to collaboratively share visual
objects across vehicles in an effort to enhance these capabilities.
Existing point cloud matching approaches [18, 22] involve heavy
computation of three-dimensional similarity, while AVR adopts a
lightweight approach exploiting pixel-voxel correspondence. Finally,
AVR can leverage complementary approaches such as [20, 21] for
content-centric methods to retrieve sensor information from nearby
vehicles, or over cloud infrastructure.

7 CONCLUSION
In this paper, we have discussed a new capability, augmented vehic-
ular reality, and have sketched the design and implementation of an
AVR system. AVR is not only beneficial to human drivers as a driv-
ing assistant system, but also, more importantly, enables extended
vision for autonomous driving cars to make better and safer deci-
sions. With extended vision, we have demonstrated that AVR can
effectively remove sensing range limitations and line-of-sight occlu-
sions. Future work on AVR will focus on improving the throughput
of processing objects, addressing the bandwidth constraints, and
reducing latency.

REFERENCES
[1] Google Self-Driving Car Project Monthly Report September 2016.

https://static.googleusercontent.com/media/www.google.com/en//selfdrivingcar/
files/reports/report-0916.pdf.

[2] Here’s How Tesla’s Autopilot Works. http://www.businessinsider.com/
how-teslas-autopilot-works-2016-7.

[3] How Uber’s First Self-Driving Car Works. http://www.businessinsider.com/
how-ubers-driverless-cars-work-2016-9.

[4] NVidia Drive PX 2. http://www.nvidia.com/object/drive-px.html.
[5] ZED Stereo Camera. https://www.stereolabs.com/.
[6] 2010. IEEE Standard for Information technology– Local and metropolitan area

networks– Specific requirements– Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access
in Vehicular Environments. IEEE Std 802.11p-2010 (Amendment to IEEE Std
802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008,
IEEE Std 802.11y-2008, IEEE Std 802.11n-2009, and IEEE Std 802.11w-2009)
(July 2010), 1–51.

[7] David Astély, Erik Dahlman, Anders Furuskär, Ylva Jading, Magnus Lindström,
and Stefan Parkvall. 2009. LTE: The Evolution of Mobile Broadband. Comm.
Mag. 47, 4 (April 2009).

[8] Cheng Bo, Xiang-Yang Li, Taeho Jung, Xufei Mao, Yue Tao, and Lan Yao. 2013.
SmartLoc: Push the Limit of the Inertial Sensor Based Metropolitan Localization
Using Smartphone. In Proceedings of the 19th Annual International Conference
on Mobile Computing and Networking (MobiCom ’13).

[9] Kevin Boos, David Chu, and Eduardo Cuervo. FlashBack: Immersive Virtual
Reality on Mobile Devices via Rendering Memoization. In Proceedings of the
14th Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys ’16).

[10] Zhaowei Cai, Quanfu Fan, Rogério Schmidt Feris, and Nuno Vasconcelos. 2016.
A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detec-
tion. In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part IV. 354–370.

[11] Tiffany Yu-Han Chen, Lenin S. Ravindranath, Shuo Deng, Paramvir Victor Bahl,
and Hari Balakrishnan. 2015. Glimpse: Continuous, Real-Time Object Recog-
nition on Mobile Devices. In 13th ACM Conference on Embedded Networked
Sensor Systems (SenSys). Seoul, South Korea.

[12] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse. 2007.
MonoSLAM: Real-Time Single Camera SLAM. IEEE Trans. Pattern Anal. Mach.
Intell. 29, 6 (June 2007).

[13] J. Engel, J. Stueckler, and D. Cremers. 2015. Large-Scale Direct SLAM with
Stereo Cameras.

[14] A. Gern, R. Moebus, and U. Franke. 2002. Vision-based lane recognition under
adverse weather conditions using optical flow. In Intelligent Vehicle Symposium,
2002. IEEE, Vol. 2. 652–657 vol.2.

[15] Mahanth Gowda, Justin Manweiler, Ashutosh Dhekne, Romit Roy Choudhury,
and Justin D. Weisz. 2016. Tracking Drone Orientation with Multiple GPS
Receivers. In Proceedings of the 22nd Annual International Conference on Mobile
Computing and Networking (MobiCom ’16).

[16] Santanu Guha, Kurt Plarre, Daniel Lissner, Somnath Mitra, Bhagavathy Krishna,
Prabal Dutta, and Santosh Kumar. 2010. AutoWitness: Locating and Tracking
Stolen Property While Tolerating GPS and Radio Outages. In Proceedings of the
8th ACM Conference on Embedded Networked Sensor Systems (SenSys ’10).

[17] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. 2016. Real-Time
Loop Closure in 2D LIDAR SLAM. In 2016 IEEE International Conference on
Robotics and Automation (ICRA). 1271–1278.

[18] Jing Huang and Suya You. 2012. Point cloud matching based on 3D self-similarity.
In Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE
Computer Society Conference on. IEEE, 41–48.

[19] Yurong Jiang, Hang Qiu, Matthew McCartney, Gaurav Sukhatme, Marco Gruteser,
Fan Bai, Donald Grimm, and Ramesh Govindan. 2015. CARLOC: Precise
Positioning of Automobiles. In Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems (SenSys ’15).

[20] Swarun Kumar, Shyamnath Gollakota, and Dina Katabi. 2012. A Cloud-assisted
Design for Autonomous Driving. In Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing (MCC ’12).

[21] Swarun Kumar, Lixin Shi, Nabeel Ahmed, Stephanie Gil, Dina Katabi, and
Daniela Rus. 2012. CarSpeak: A Content-centric Network for Autonomous
Driving. SIGCOMM Comput. Commun. Rev. 42, 4 (Aug. 2012).

[22] Mathieu Labbé and François Michaud. 2014. Online global loop closure detection
for large-scale multi-session graph-based slam. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2661–2666.

[23] Raul MurArtal, J. M. M. Montiel, and Juan D. Tardos. 2015. ORB-SLAM: a
Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics
(2015).

[24] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges, and
Andrew Fitzgibbon. 2011. KinectFusion: Real-time Dense Surface Mapping and
Tracking. In Proceedings of the 2011 10th IEEE International Symposium on
Mixed and Augmented Reality (ISMAR ’11).

[25] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi.
2015. You Only Look Once: Unified, Real-Time Object Detection. CoRR
abs/1506.02640 (2015). http://arxiv.org/abs/1506.02640

[26] Miguel Angel Sotelo, Francisco Javier Rodriguez, Luis Magdalena, Luis Miguel
Bergasa, and Luciano Boquete. 2004. A Color Vision-Based Lane Tracking
System for Autonomous Driving on Unmarked Roads. Auton. Robots 16, 1 (Jan.
2004), 95–116.

[27] Arvind Thiagarajan, Lenin Ravindranath, Katrina LaCurts, Samuel Madden, Hari
Balakrishnan, Sivan Toledo, and Jakob Eriksson. 2009. VTrack: Accurate, Energy-
aware Road Traffic Delay Estimation Using Mobile Phones. In Proceedings of
the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys ’09).

[28] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei
Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoff-
mann, Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascal Stang,
Sven Strohband, Cedric Dupont, Lars-Erik Jendrossek, Christian Koelen, Charles
Markey, Carlo Rummel, Joe van Niekerk, Eric Jensen, Philippe Alessandrini, Gary
Bradski, Bob Davies, Scott Ettinger, Adrian Kaehler, Ara Nefian, and Pamela
Mahoney. 2006. Stanley: The Robot That Won the DARPA Grand Challenge:
Research Articles. J. Robot. Syst. 23, 9 (Sept. 2006), 661–692.

[29] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner,
M. N. Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, Michele
Gittleman, Sam Harbaugh, Martial Hebert, Thomas M. Howard, Sascha Kolski,
Alonzo Kelly, Maxim Likhachev, Matt McNaughton, Nick Miller, Kevin Peterson,
Brian Pilnick, Raj Rajkumar, Paul Rybski, Bryan Salesky, Young-Woo Seo, Sanjiv
Singh, Jarrod Snider, Anthony Stentz, William “Red” Whittaker, Ziv Wolkowicki,
Jason Ziglar, Hong Bae, Thomas Brown, Daniel Demitrish, Bakhtiar Litkouhi,
Jim Nickolaou, Varsha Sadekar, Wende Zhang, Joshua Struble, Michael Taylor,
Michael Darms, and Dave Ferguson. 2008. Autonomous Driving in Urban
Environments: Boss and the Urban Challenge. J. Field Robot. 25, 8 (Aug. 2008),
425–466.

https://static.googleusercontent.com/media/www.google.com/en//selfdrivingcar/files/reports/report-0916.pdf
https://static.googleusercontent.com/media/www.google.com/en//selfdrivingcar/files/reports/report-0916.pdf
http://www.businessinsider.com/how-teslas-autopilot-works-2016-7
http://www.businessinsider.com/how-teslas-autopilot-works-2016-7
http://www.businessinsider.com/how-ubers-driverless-cars-work-2016-9
http://www.businessinsider.com/how-ubers-driverless-cars-work-2016-9
http://www.nvidia.com/object/drive-px.html
https://www.stereolabs.com/
http://arxiv.org/abs/1506.02640

	Abstract
	1 Introduction
	2 Background, Motivation and Challenges
	3 AVR Design
	3.1 Localization using Sparse 3-D Feature Maps
	3.2 Extending Vehicular Vision
	3.3 Detecting and Isolating Dynamic Objects

	4 Preliminary Evaluation
	5 Remaining Challenges and Future Work
	6 Related Work
	7 Conclusion
	REFERENCES

