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Abstract—This paper proposes a stochastic model for the
Global Positioning System (GPS) position errors on smartphones
in urban canyons. The need to simulate such errors arises
in pedestrian to vehicle communications, for example, which
enable a new way to protect vulnerable road users. Studying this
technology requires accurate modeling of the GPS precision on
portable devices, e.g., smartphones since they share pedestrians’
location information with vehicles for collision avoidance. The
model is derived from and calibrated with pedestrian GPS traces
collected from New York City. We show that the model produces
GPS error samples with similar spatial and temporal correlation
as in the collected field data.

Index Terms—GPS Error Model, Smartphone, Simulation,
V2P.

I. INTRODUCTION

The need to simulate Global Positioning System posi-
tion traces with their expected positioning errors arises in
Pedestrian-to-Vehicle (P2V) communication scenarios that are
currently under standardization, for example. Here, Personal
Information Devices (PID), such as smartphones, broadcast
their kinetic information such as their location, speed, heading,
etc. in a Personal Safety Message (PSM) [1]. Nearby vehicles
can use the received information to improve their situational
awareness, among other Intelligent Transportation System
(ITS) applications. While some research questions can be
answered experimentally, network scalability questions, that
is network performance with hundreds or thousands of nearby
transmitters, are often impractical to answer experimentally
and studied through simulations.

Simulation is a credible approach for predicting and evalu-
ating system performance at large scales as long as simulator
components are carefully modeled and calibrated to reflect
their real-world replicas [2]. When evaluating P2V systems us-
ing simulations, GPS positioning errors can have a significant
impact on the evaluation results, in particular when evaluating
accident risk reductions or with context-aware transmissions
strategies that are dependent on GPS accuracy [3], [4]. Hence,
these simulation environments benefit from accurate GPS
position error models.

Previous work focuses more on analyzing sources of error in
positioning systems and they often need many details available
to accurately account for all of the contributing components.
Rankin et al. proposed a GPS error model that accounts for dif-
ferent sources of error [5]. It is among the most sophisticated
yet complex models to date that fits more to carefully analyze

GPS error rather than simulation purposes. Other examples
are map-matching technique [6] and using a 3D map of the
environment to reduce the error by considering deflection off
of the surrounding buildings [7]. For replicating GPS error
in the simulation environment, however, multi-path and low
satellite visibility can be considered the primary sources of
GPS error, especially in an urban canyon environment. In
addition, modeling different sources of GPS error is not a
priority in the simulation environment and a realistic combined
error model suffices.

Stochastic processes, on the other hand, can be used to
model such errors without a need for exact ray-tracing though
of satellite signals through a 3D building environment. Ali
and Abu-Elkheir [8] have investigated the correlation between
consecutive GPS samples as time-series in a vehicular envi-
ronment. Their measurements, however, is targeting further
localization improvements by enabling the GPS device to post-
process raw GPS samples using error tracking techniques.

We, therefore, build on such time-series properties to create
a GPS error model for smartphones. We further introduce our
data collection experiments in Manhattan, New York City,
which resulted in 10-hour GPS samples for walking on 7th

avenue and 9th avenue. This dataset is used to study the
temporal and spatial characteristics of GPS error, as well
as comparing different GPS sensors. We then calibrate our
introduced GPS error model for different configurations.

In summary, the contributions of this paper are as follows:

• studying characteristics of GPS error such as the cor-
relation between consecutive samples, as well as the
distribution of the samples across different environments,
times, and sensor models.

• proposing a stochastic GPS error model to capture the
extracted characteristics from data analysis via an autore-
gressive process.

• fitting the proposed model using different subsets of
the collected data with different configurations, such as
different GPS sensors and different locations. The fits are
location-specific.

II. GPS ERROR MODEL

In this section, we study a trace of consecutive GPS samples
and model the offset of the recorded samples from their true
location, i.e. their ground truth.



A. Problem Definition

The measured location −→s = (slat,slon) at time t can be
modeled as a summation of the actual (ground truth) position,
i.e. −→g = (glat,glon), and an error term −→e = (elat,elon),
as shown in Eq. 1. Note that we focus on modeling two-
dimensional positions, therefore the actual position and the
error (the offset of the reported position by the sensor from
the ground truth) have two components which we will refer
to as latitude and longitude.

−→s (t) = −→g (t) +−→e (t) (1)

In a simulation environment, the actual locations of the
receivers’ antennas −→g at any given time t are determined
by a separate mobility model. The focus of this work is on
modeling the offsets from the ground truth −→e .

In particular, we seek a stochastic model that accurately
represents the direction and the magnitude of the error as well
as their changes over time.

B. Autoregressive Model

To address this, we model the GPS error −→e through an
autoregressive (AR) process. This is motivated by empirical
observations that the GPS error term of successive samples
has high autocorrelation. Fig. 1 shows the autocorrelations
between longitudinal and latitudinal errors with one second
delay between consecutive samples. As evident, the autocor-
relation is high for the first few lags. Hence, an AR process
is a suitable model.

(a)

(b)

Fig. 1: Autocorrelation samples for the error magnitude of one
of the GPS traces collected from 9th Avenue; (a) Longitudinal
errors, and (b) Latitudinal errors.

Eq. 2 shows how the error term can be represented through
an AR process of order p.

−→e (t) =
−→
δ +

p∑
i=1

−→
φi
−→e (t− i) +−→w (t) (2)

Here, t is the tth sample in the time-series,
−→
φi is a vector

of AR parameters for the ith lag, −→w is a vector of zero-mean

white noises with standard deviation −→σw, and
−→
δ is a constant

vector as defined in Eq. 3.

−→
δ = (1−

p∑
i=1

−→
φi)
−→m (3)

Here −→m is a vector containing the mean of longitudinal and
latitudinal errors.

C. Degree of the Autoregressive Process

We determine the degree p, of such an AR process as
follows. Let p ∈ N be the maximum distant lag that has a
significant impact on the times series behavior. p is calculated
using the Partial Autocorrelation Function (PAF).

(a)

(b)

Fig. 2: Partial Autocorrelation samples for a GPS trace col-
lected from 9th Avenue; (a) Longitudinal and (b) Latitudinal
errors.

Fig. 2 shows the resulting partial autocorrelation samples
using both the longitudinal and latitudinal errors for one of
the traces. The red dashed lines are the confidence thresholds.
Lags with values between these thresholds do not have a major
impact on the precision of the fit. These lags, however, can
still be considered in the model.

As seen in Fig. 2, the result of applying PAF on the
longitudinal/latitudinal errors shows that the first three lags
have a significant impact on the behavior of the stochastic
process. Therefore, we use an AR process of degree three
(p = 3 in Eq. 2). The observed significance values were
approximately similar when other traces were examined as
well.

III. MODEL CALIBRATION

The proposed model in the previous section leverages the
characteristics of time-series. This model can be calibrated to
mimic the properties of provided GPS samples by smartphones
in a particular environment. The model fits, however, will
be location-specific. In this section, we report on our data
collection campaign in New York City. The collected GPS
traces are further analyzed and used for calibration of the GPS
error model. We particularly intend to fit the proposed model
for
−→
δ ,
−→
φ1,
−→
φ2,
−→
φ3, and −→σw of the white noise −→w in Eq. 2.



A. Data Collection

GPS traces are collected during two afternoons in Manhat-
tan, New York City. We developed an Android app which uses
the standard Android API to retrieve raw GPS readings from
the smartphone’s GPS sensor and records them in a CVS file.
The app records latitude, longitude, heading, speed, number of
visible GPS satellites to the phone, and the estimated error, as
well as the timestamp of the recording time. Two smartphones
are used at the same time to collect the samples: 1) a Google
Pixel smartphone (1st generation) with Qualcomm Snapdragon
821 chipset, and 2) a Nexus 5 smartphone with Qualcomm
Snapdragon 800 chipset. These two smartphones use different
integrated GPS sensors.

To collect the required GPS samples, one of the authors
walked in predefined routes on the map (we call it a trip), on
the sidewalks and tried to maintain pace (See Fig. 3 for two
example trips). He further recorded time by pressing a button
on each of the smartphones’ screens once at the beginning of
the trip, and afterward, when arriving at certain locations along
his walking path–right before entering the crosswalks on his
path. That makes 16 landmarks for one trip. The coordination
of each landmark was obtained from Google Earth. Given the
assumption of constant speed of the person between each pair
of landmarks and the recorded arrival timestamps, the ground
truth for each logged GPS sample was approximated. While
not perfect, the measurement error appears to be acceptable.
In the end, over 19k processed samples were available in 25
different trips.

(a) (b)
Fig. 3: (a) Examples of collected GPS samples using Pixel
phone and their corresponding estimated ground truth for 7th

and 9th Avenues, Manhattan, NYC, and a (b) zoomed-in on
the 7th avenue.

Fig. 3 shows two out of several collected GPS traces. The
depicted samples belong to Manhattan’s 7th and 9th avenues.
Each magenta dot shows a recorded GPS location by the
smartphone’s GPS sensor and the time interval between two
consecutive samples is one second.

B. Calibration

After approximating the amount of error for each collected
GPS sample in the dataset, the magnitude of errors are
studied from three different perspectives: 1) spatial, where the
collected GPS samples from two different environments on

the map are compared, 2) temporal, where the GPS samples
are collected from the same route on the map using the same
phone on different days, and 3) different sensor types, where
two different phones with different GPS sensor chipset are
used to simultaneously collect data on the same route. Note
that for the spatial comparison, the samples from different
routes on the map are not collected exactly at the same time
and that could impact the results.

TABLE I: Information of the Datasets

Dataset Route Device

DS1 9th Avenue Nexus 5
DS2 9th Avenue Pixel (1st generation)

DS3 9th Avenue Pixel (1st generation)
DS4 9th Avenue Pixel (1st generation)

DS5 7th Avenue Pixel (1st generation)
DS6 9th Avenue Pixel (1st generation)

DS7 7th Avenue Nexus 5

Table I shows the details of the available datasets such as the
route that the data is collected, as well as the device which the
data is collected with. These datasets are used for comparing
the behavior of the positioning accuracy temporally, spatially,
and across different GPS receivers.

Fig. 4: Statistical comparison between: (left) collected samples
using different GPS sensors, (middle) temporally different, and
(right) spatially different datasets.

Fig. 4 shows a statistical comparison between different
subsets of the entire collected data from the Manhattan area.
The leftmost figure shows the comparison between different
sensors by comparing positioning error distribution for the
data collected on 9th avenue. DS1 is the concatenated data
using the Nexus 5 smartphone, and DS2 shows, as well, the
concatenated data collected using the Pixel smartphone. The
figure in the middle, further shows the temporal comparison
of the error distribution. This figure compares the statistical
distribution of the positioning error for the samples collected
on 9th avenue at different times using Pixel smartphone. The
rightmost figure shows the spatial comparison of the error
distribution, by comparing GPS error from 7th avenue (DS5)
and 9th avenue (DS6) using the Pixel smartphone.

One observation from the distribution of different datasets
in Fig. 4 is that the impact of the environment is higher than
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Fig. 5: Difference of autocorrelation samples between the simulated traces and collected GPS traces; Longitudinal error (1st

row) and latitudinal error (2nd row) for DS1 (1st column), DS5 (2nd column), and DS6 (3rd column).

the others. DS5 represents a dataset collected in 7th avenue,
where the area is surrounded by many skyscrapers among the
tallest in the world. On the contrary, the environment of DS6
is mostly surrounded by <8-story buildings, providing much
more clear sky view for the GPS sensors. Another observation
is that the Pixel phone generally does better than the Nexus
5 phone, both in terms of the expected error magnitude and
amount of variations. By comparing DS3 and DS4, we can
also confirm the impact of time on the positioning accuracy,
which is mostly because the visible set of GPS satellites to
the smartphone is time-varying.

We fit the model for the aforementioned data by Yule-
Walker estimation method [9]. The estimation and calculation
are carried out by MATLAB. Table II shows the fitted param-
eters for several different datasets.

TABLE II: Fitted AR(3) parameters

Err. δ φ1 φ2 φ3 σw

D
S5 elat 0.07 1.18 −0.06 −0.14 1.52

elon −0.02 1.15 −0.03 −0.14 1.58

D
S2 elat 0.03 1.31 −0.04 −0.28 0.49

elon −0.02 1.66 −0.72 0.04 0.39

D
S1 elat −0.02 1.71 −0.75 −0.04 0.72

elon 0.02 1.52 −0.53 −0.07 0.93

D
S7 elat 0.02 1.58 −0.53 −0.06 0.53

elon −0.11 1.23 −0.15 −0.1 0.99

Table II shows the fitted parameters for the resulting AR
process for 7th and 9th avenues for both smartphones. Note
that the parameters only show the fit for one of several data
collection passes with the same configuration, i.e. without
concatenating all passes with similar configurations. We be-
lieve higher simulation accuracy is achievable if the fitting
procedure is done for smaller sections of the map other than
for the entire trace.

IV. CROSS-VALIDATION

The calibrated model is implemented in ns-3 network sim-
ulator [10] to simulate GPS traces for comparison. In this
section, the goodness of fit is examined by comparing the

simulated samples and the collected GPS samples from the
experiments regarding different characteristics of a time-series.

Fig. 6: A time-series with its two primary characteristics
marked.

The key metrics we use to evaluate the fit of the time-series
of position errors are the overall distribution of error vectors
and the correlation of error vectors over time, as illustrated in
Fig. 6.

For cross-validating, the correlation between different lags,
the movement of the person who collected the data was
replayed in the simulator. For each simulated trip, the corre-
sponding fit for the same trip was chosen from Table II. The
result was three GPS traces of similar length to one trip during
the data collection. The steps towards calibrating the model
were repeated for each simulated trace. Then, we calculated
the offset of the autocorrelation between the simulated traces
for each fit and the GPS trace which was used to create that
fit. Fig. 5 illustrates the resulted values for cross-validating the
calibrated model for each fit in terms of autocorrelation offset.
As seen, most of the fits have negligible noise for the most
significant lags, i.e. smaller values on the x-axis for both the
longitudinal and latitudinal errors.

For examining the goodness of fit for the distribution of
the generated samples, Quantile-Quantile plot (QQPlot) is
a widely accepted way to compare the distribution of two
datasets together. In this context, we compare the distribution
of the generated GPS traces using different fits from Table II
with the corresponding datasets. Note that the fitted model
is sensitive to time as well. Given that, we do not cross-
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Fig. 7: Quantile-quantile comparison between the simulated traces and collected GPS traces; Longitudinal error (1st row) and
latitudinal error (2nd row) for DS1 (1st column), DS5 (2nd column), and DS6 (3rd column).

validate an individual fitted parameter set with other datasets.
Fig. 7 shows that the distribution of DS7 is a bit noisier than
the rest. Note that the Manhattan area is an urban canyon
with a very limited sky view. In addition, occasional signal
blocks are usual when walking in the sidewalks when passing
construction zones with the temporary safety ceiling. All in
all, the amount of noise in the samples seems acceptable.

Fig. 8: Zoomed-in map with logged GPS trace and simulated
GPS samples using the calibrated GPS error model.

To illustrate the performance of the proposed GPS error
model for the 9th Avenue, the model is implemented in both
MATLAB and ns-3. Fig. 8 shows the logged GPS trace in
a tight train of red dots, and the train of green dots for the
simulated GPS samples by adding the generated errors by the
calibrated AR(3) model to the ground truth.

V. CONCLUSION

In this paper, we collected several GPS samples and calcu-
lated the magnitude of error for each sample via ground truth
approximation. We further analyzed the GPS error as a time-
series and modeled it using autoregressive (AR) process and
calibrated the model using the collected data from New York
City. The model is calibrated for different configurations. We
further cross-validated the fits with the collected data to show
the goodness of fit in terms of the correlation between different

time lags, as well as the distribution of the simulated traces.
It is shown that the time correlation offset does not exceed
the significance threshold for the important lags and that the
simulated traces show a similar distribution to the collected
samples.
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