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Enabling Extended Vision  
for Future Automobiles
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Autonomous cars are becoming a reality, 
but have to demonstrate reliability in the 
face of environmental uncertainty. Today, 
a few high-end vehicles have a 3D sensing 
capability that provides depth perception 
of the car's surroundings. This capability is 
likely to become pervasive in future vehicles 
and can be achieved using 3D sensors such 
as advanced multi-beam LiDAR, RADAR, 
long-range ultrasonic and forward-facing 
or surrounding-view camera sensors. These 
3D sensors can be used to detect and track 
moving objects, and to produce a high-
definition (HD) map for localization [2,3]. 
Recent research in autonomous driving 
[4,5,6] has leveraged some of these advanced 
sensors to improve perception.    

These 3D sensors have one common 
feature: they generate periodic 3D frames,  
where each frame represents the instantaneous  
3D view of the environment. A 2D image 
frame is represented by an array of pixels, but 
a 3D frame is represented by a point cloud. 

Each point in the point cloud frame contains 
the three-dimensional position (which enables  
depth perception) and (optionally) the color  
of the point. A 64-beam Velodyne LiDAR 
can collect point clouds at 10 Hz containing 
a total of 2.2 million points each second 
encompassing a 360 degree view with an 
effective sensing range of 120 m. Stereo 
cameras can collect point clouds at 60 Hz with 
more than 55 million points per second, but 
with a limited field of view (110 degrees) and 
an effective sensing range of 20 m [7]. 

However, these 3D sensors only provide 
line-of-sight perception and obstacles 
can often block a vehicle’s sensing range. 
Moreover, the effective sensing range of 
these sensors is often limited by weather 
conditions (e.g., fog, rain, snow, etc.) or 
lighting conditions [8, 9]. These limitations 
can impact the efficacy of autonomous 
driving or advanced driver assistance 
systems (ADAS). Consider the following 
examples. A car is following a slow-moving 
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utonomous vehicle prototypes today come with line-of-sight depth 
perception sensors like 3D cameras. These 3D sensors are used 
for improving vehicular safety in autonomous driving, but have 
fundamentally limited visibility due to occlusions, sensing 

range, and extreme weather and lighting conditions. To improve visibility 
and performance, we explore a capability called Augmented Vehicular 
Reality (AVR). AVR broadens the vehicle’s visual horizon by enabling 
it to wirelessly share visual information with other nearby vehicles. We 
show that AVR is feasible using off-the-shelf wireless technologies, and it 
can qualitatively change the decisions made by autonomous vehicle path 
planning algorithms. Our AVR prototype achieves positioning accuracies 
that are within a few percentages of car lengths and lane widths, and it is 
optimized to process frames at 30fps.
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truck on a single-lane highway. Th e car 
would like to overtake the truck, but its 
3D sensor is obstructed by the truck so it 
cannot see oncoming cars in the opposite 
lane. Similarly, two cars, waiting to turn left  
at an unprotected intersection, can each be 
“blinded” by each other. As a third example, 
consider a car following another one. Th e 
leader’s driver may be distracted, and 
brake suddenly upon noticing a pedestrian 
entering a crosswalk. Th e follower, unable 
to see the pedestrian, cannot brake in time 
to prevent rear-ending the leader.

In these situations, vehicles can benefi t 
from wirelessly sharing visual information 
with each other, eff ectively extending their 

visual horizon. Th is would augment vehicular 
visibility in hazards, and enable improved 
perception under challenging scenarios 
(Figure 1). Specifi cally, in the one-lane 
highway scenario, if the truck were to 
communicate visual information from its 3D 
sensors to the car, using some form of V2V 
technology, the latter’s autonomous driving 
or ADAS soft ware could determine the safest 
time and the speed at which to overtake 
the truck. Similarly, in the left -turn or the 
platoon scenarios, the transmission of visual 
information can help cars turn, or stop, safely. 

Th is capability, which we call Augmented 
Vehicular Reality (AVR), aims to combine 
emerging vision technologies being 

developed specifi cally for vehicles, with 
off -the-shelf communication technologies. 
In this article, we describe the design of 
AVR. AVR adapts a recent feature-based 
SLAM technique to relatively position a 
receiver with respect to a sender so that the 
receiver can re-orient received point clouds 
with respect to its own position. To reduce 
bandwidth requirements of transferring 
full point clouds, AVR isolates and analyzes 
the motion of dynamic objects. AVR uses 
an adaptive transmission strategy that 
sends motion vectors instead of point 
clouds to cope with channel variability. It 
incorporates careful pipelining to increase 
the frame rate, and leverages motion 
prediction to hide latency.

Our initial AVR prototype can transmit 
visual information within 150-200 ms and 
process at 30 fps. It also adapts gracefully 
to channel variability. AVR’s extended 
vision, when used as input to path planning 
algorithms, can avoid dangerous overtake 
attempts resulting from limited visibility. 

AVR DESIGN
AVR consists of two logically distinct 
sets of components (Figure 2). One runs 
on a sender and contains the 3D frame 
processing algorithms that generate visual 
descriptions to be sent to one or more 
receivers. Receivers can either feed the 
received visual descriptions to a heads-
up display (Figure 1c), or reconstruct 
an extended view containing the visual 

FIGURE 2. AVR sender and receiver side components.
FIGURE 1. AVR allows a follower vehicle to see objects that it 
cannot otherwise see because it is obstructed by a leader vehicle.
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descriptions received from the sender with 
their own 3D sensor outputs. This extended 
view can be fed into ADAS or autonomous 
driving software.

AVR poses several challenges. First, for 
AVR, each vehicle needs to transform the 
received visual information into its own 
view. To do this, AVR must estimate its 
position and orientation with respect to the 
sender of the raw sensor data, and then 
perform a perspective transformation that 
re-orients the received point cloud. 

To address this challenge, both the 
sender and the receiver share a sparse 3D 
map of the road and the roadside structures. 
This map is analogous to the 3D maps that 
autonomous driving systems use to position 
themselves with respect to the environment, 
but with one important difference: it is 
sparse, in that it only contains features 
extracted from the denser 3D maps used 
by these systems. For AVR, such a sparse 
map suffices for relative positioning. The 
sparse 3D map can be constructed offline, 
and potentially crowd-sourced. With this 
sparse map, the sender processes 3D frames 
from its camera and extracts features 
within the 3D frames, then uses some of 
these features to position its own camera 

FIGURE 3. Path Planning and Road Detection in Action: a) without AVR, the follower vehicle 
decides to overtake the white SUV; b) with extended vision, the oncoming vehicle and more road 
surface area is detected, and the path planner decides not to attempt overtaking. c) AVR helps 
the follower detect twice the road than it might have otherwise. d) With AVR, the follower would 
avoid the overtake maneuver.

relative to the sparse 3D map. The sender 
sends its position and a compressed (see 
below) representation of the 3D frame to 
the receiver. The receiver uses the sender’s 
camera coordinates, features extracted 
from its own 3D sensor, and its own copy of 
the sparse 3D map to estimate its position 
relative to the sender. After decompressing 
the received point clouds of dynamic 
objects, the receiver applies a perspective 
transformation to these objects to position 
them within its own coordinate frame of 
reference.

Second, if AVR were to transmit 3D 
frames at full frame rates, the bandwidth 
requirement could overwhelm current and 
future wireless technologies. Fortunately, 
successive 3D frames contain significant 
redundancy: static objects in the environ-
ment may, in most cases, not need to 
be communicated between vehicles, 
because they may already be available in 
precomputed HD maps. For this reason, an 
AVR sender can also, instead of sending full 
frames, transmit point clouds representing 
dynamic objects (e.g., cars, pedestrians) 
within its field of view, and also the motion 
vector of these dynamic objects. AVR 
transmits motion vectors adaptively: when 

it is “falling behind” in transferring full 
frames, it sends motion vectors to “catch 
up.” The receiver uses the object’s motion 
vectors to reconstruct the object position, 
and superimposes the received object’s 
point cloud onto its own 3D frame.

Third, many of the 3D sensor processing 
algorithms are resource-intensive, and 
this impacts AVR in two ways. It can limit 
the rate at which frames are processed 
(the throughput), and lower frame rates 
can impact the accuracy of algorithms that 
detect and track objects or that estimate 
position. It can also increase the latency 
from when a 3D frame is captured and when 
the corresponding point cloud is received at 
another vehicle. AVR selects, where possible, 
lightweight sensor processing algorithms, 
and also optimizes the processing pipelines 
to permit high throughput and low end-
to-end latency. Its motion vectors permit 
receivers to hide latency. More optimization 
details of the processing pipeline can be 
found in our full paper [1].

AVR EVALUATION
We use a full-fledged implementation of 
AVR to first demonstrate the benefits of 
AVR and then evaluate the end-to-end 
performance and reconstruction accuracy. 
We use two laptops each with an Intel 
7th generation quad-core i7 CPU clocked 
at 4.4GHz, 16GB of DDR4 RAM and an 
nVidia 1080p GPU equipped with 2560 
CUDA cores. We place one laptop in a 
leader vehicle, and the other laptop in a 
follower vehicle. Each laptop is connected 
to a ZED stereo camera and to a TP-Link  
Talon 7200 wireless router. The routers 
communicate using the wireless 
distribution system (WDS) mode.

The Benefits of AVR for ADAS  
and Autonomous Driving
Autonomous driving and ADAS systems 
use several building blocks including 
localization, object detection, drivable 
space detection, path planning, and so on. 
Many of these could benefit from AVR. We 
have implemented two of these algorithms, 
road surface detection and path planning, 
to demonstrate the benefits of AVR for the 
overtaking scenario, in which a follower 
would like to overtake a leader car, but 
its view is obstructed by the leader. We 
collected a trace with two vehicles, a leader 
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and a follower, driving along a road, and 
a third oncoming vehicle in the opposite 
lane. We feed the reconstructed view to the 
receiver where both a road detection and  
a path planning algorithm is applied.  
Figure 3 (a,b) shows the detected road 
(marked in blue) and the planned path 
(marked in connected green crosses). In the 
first case without AVR, the follower could 
only see the leader’s trunk and detect road 
surface up to the sensing range limit with 
occlusion. The planner found a path to 
overtake the leader switching to the left lane. 
With AVR, the follower can not only detect 
much more road but also the oncoming 
vehicle, so the path planning algorithm 
does not attempt the overtaking maneuver 
(Figure 3d). With AVR, the follower is able 
to detect twice as much visible road surface 
as without AVR (Figure 3c).

Other performance results [1] show that 
AVR has significant promise. It is able to 
transmit full point cloud frames between 
two cars, with each frame interspersed with 
a motion vector. AVR can also transmit 
point cloud of dynamic objects in the scene 
at much higher fidelity, requiring a motion 
vector only once in about 300 frames. The 
end-to-end latency is on the order of 130 ms  
in the latter case. Finally, AVR achieves  
1.6 cm median reconstruction error for static 
objects and 20 cm in the 90th percentile for 
dynamic objects at 20 mph. More results are 
discussed in the full paper [1].

CONCLUSION
In this article, we have discussed the design 
and implementation of an AVR system, 
which extends vehicular vision by enabling 
vehicles to communicate raw 3D sensor 
information. AVR can be used as input to 
driving assistance and autonomous driving 
systems. The design of AVR uses a novel 
relative localization technique, careful 
perspective transformation, dynamic object 
isolation, latency hiding using velocity 
vectors and adaptive frame transmission. 
Our AVR prototype is flexible enough to 
transmit full frames or dynamic objects, 
achieves 200ms end-to-end delay, can 
reconstruct objects to within 2-10% of car 
lengths and lane widths, and achieve 30 fps 
throughput. 

Currently AVR uses stereo cameras 
with limited range, which might affect 
the performance when operating in an 

environment with less roadside features, 
inclement weather, and changing lighting 
conditions. Fortunately, AVR does not need 
to match every feature in the map in order 
to localize a vehicle. Future work includes 
incorporating LiDAR device to enhance 
perception range and robustness, exploring 
lightweight or intermediate representations 
of the environment, and scaling AVR to a 
cluster of vehicles while minimizing the 
communication overhead. n
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