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Abstract—This paper proposes an algorithm to compute the proposed to design aligned beamformers [3]-[9], they ate no
uplink transmit beamformers for linear interference align ment in always guaranteed to converge to a set of aligned beamfermer
MIMO cellular networks without symbol extensions. In parti cular, that achieve the requisite number of DoF. Third, constvecti

we consider interference alignment in a network consistingf G hes to desi i db f h b
cells and K users/cell, havingN and M antennas at each base sta- approaches 1o design aligned beamformers such as subspace

tion (BS) and user respectively. Using an alternate interpetation ~alignment chains [10] are not yet available for a broad class
of the conditions for interference alignment, we frame the poblem  of (G, K, M, N) networks. Thus, iterative algorithms for de-
of finding aligned transmit beamformers in the uplink as an sjgning aligned beamformers are very much of interest to the
optimization problem to minimize the rank of a set of interference research community

matrices subject to affine constraints. The interference miix of a S | iterati lgorith ilable to desi b
BS consists of all the interfering vectors at that BS. The prposed everal iterative algorithms are available to design beam-

algorithm approximates rank using the weighted Frobenius mrm  formers for interference alignment [3]-[9]. In [3], an ier
and iteratively updates the weights so that the weighted Frioenius tive algorithm for the MIMO interference channel based on

norm is a close approximation of the rank of the interference minimizing the sum of interference power at all the recesver
matrix. A crucial aspect of this algorithm is the weight updae is proposed, and this algorithm is extended to MIMO cel-

rule that guides the algorithm towards aligned beamformers We . . .
propose a novel weight update rule that discourages the algithm lular networks in [5]. While the algorithms of [3] and [5]

from converging to local minima that do not generate the reqisite areé known to converge, they typically need several thousand
number of interference free dimensions. The proposed algithm iterations (although, the per-iteration complexity is lag

is computationally efficient since it only requires solvinga simple  they only require computing a small number of eigenvalue
quadratic program in each iteration. Simulation results indicate decompositions per iteration). In [6], a rank constrainaokr
much faster convergence to aligned beamformers when comped L - .
to algorithms of similar complexity. m|n|m|zat|on f.rameworlk for finding I|neqr beaqurme.rs for
interference alignment is proposed. Rank is approximasetju
|. INTRODUCTION the nuclear norm, which is suited for inducing sparsity. In
Linear beamforming techniques for interference mitigatio[8], [9], [11] a reweighted nuclear norm approach to finding
are of significant interest in MIMO cellular networks wherealigned beamformers is proposed where the rank of a certain
increasing density along with new backhaul enhancements hinterference matrix is minimized. Due to the nuclear norm
necessitated and enabled coordinated interference maeage approximation, the algorithms of [6], [8], [9], [11] invodv
In this context interference alignment has emerged as a kajving a series of semidefinite programs. These algoritmas
concept in addressing interference in such networks. Itrash more computationally intensive than the algorithms of [3],
to asymptotic interference alignment schemes [1], [2] thhut they require fewer iterations.
typically require decomposition of multi-antenna nodesl an In this work, we develop a computationally efficient itera-
infinite symbol extensions, linear beamforming schemes diee algorithm for designing aligned beamformers for MIMO
simpler to implement and therefore more relevant in practiccellular/interference networks. We focus on linear ireezhce
In this work we develop an algorithm to design aligned traibhsmalignment without symbol extensions and assume the channel
and receive beamformers to achieve a given number of degreede generic. Using an alternate set of conditions for inter
of freedom (DoF) in aG-cell, K-user/cell network withd/ ference alignment developed in [11], we cast the problem of
antennas at each user addantennas at each base station —finding aligned beamformers as a rank minimization problem
a (G, K, M, N) network. subject to linear constraints. Using this framework, weeliey
Our interest in designing algorithms for interference mlig an iterative weighted-Frobenius-norm minimization aitjon
ment is threefold. First, in cooperative cellular netwothat to obtain a set of aligned beamformers. A crucial aspectisf th
operate in an interference-limited regime, these beandmsmalgorithm is a novel reweighting method that takes advantag
identify regions in the optimization landscape where ifger of the knowledge of the achievable DoF of the network to
ence is significantly mitigated. Second, while there ex@gesal steer the optimization procedure away from undesirablalloc
algebraic-geometry-based techniques that establislibfiigs optimum solutions. This algorithm is inspired by a similar
of interference alignment, iterative algorithms are $ilically framework developed for rank minimization in the context of
necessary to design the beamformers that achieve the itequihe matrix completion problem [12]. Every iteration of this
number of DoF. While several iterative algorithms have beerew algorithm only requires solving an unconstrained qatidr



program, which are computationally easy to do. Furtheikanl  We briefly state an alternative reformulation of the cordig
existing algorithms, this algorithm does not require al&tely for interference alignment introduced in [11]. Conditiof®y
optimizing transmit and receive beamformers as the onli vaand (3) can be alternately stated as
ables of optimization are transmit beamformers in the Wplin

P kp rank(R,) < N — Kd V g, @)

I[l. SYSTEM MODEL rank(Vg,) = d ¥ g, k. (5)
Consider the uplink of a cellular network consisting Gf
interfering cells withK users per cell. Each user is assumed
haveM antennas and each BS is assumed to héantennas.
Let the channel from théth user in thegth cell to theith
base station (BS) be denoted as fiie« M matrix H gy ;). We
assume all channels to be generic. All channels are asswme
be known perfectly and available at a central location. I t
uplink, let x4, denote thel x 1 signal vector transmitted by
thekth user in thegth cell. This transmit signal vector is formed
using aM x dg linear transmit beamforming matri¥ ,;, and

his reformulation follows from the fact that when inter-
erence spans no more thaN — Kd dimensions, generic
channels ensure that the intersection between useful Isigna
subspacéspar{{Hy , Vg };—,)) and interference subspace
EspanRg)) is almost surely zero dimensional. This allows us to
eplace (2) with a rank constraint on the interference satxsp
4), which ensures that sufficient dimensions are available
each BS for the desired signals. In addition, since generic
channel matrices are almost full rank, condition (3) issetil
received using av x dg receive beamforming matri¥iy, as long a&ank(ng) = d. This gives ris_e to condition (5) in
mg reformulation. Once a set of transmit precodé&vs, } that

whered, represents the number of transmitted data strea e . & .
gk P satisfy the above conditions are designed, designing tteive

of the kth user in thegth cell. The received signal after being; . ; .
processed by the receive beamforming matdiy, at the gth ggll:ce{r\sf |s}tr:;nvstra|ghtforward. We collectively refer tcetket
gk :

BS can be written as . . . .
¢ K Since we need to design transmit beamformers that satisfy
H. " I conditions (4) and (5), it is natural to pose the problem of
Ughyg = ZZngH(iJ,g)VUSU + Ugkng, @) finding these beamformers as a feasibility problem, as given

=1=1 below: o
wheres;; is thed;; x 1 symbol vector transmitted by thgh minimize 1
user inith cell andn, is the N x 1 vector representing circular subject to rank(R,) < N - Kd Vg, (6)
symmetric additive white Gaussian noise\ (0, I). While the rank(Vg) = d V (g, k).

framework developed in this paper is applicable for any $et o . ) ) ) .
d,is that constitute a proper and feasible system, we restriifile the rank constraint o, is easily handled by imposing
our focus to the symmetric case wheig, = d Vg, k. The he conditionV,(1:d,1:d) = 1V g,k handling the
downlink received signal is defined similarly. rank constraint onR, is not straightforward. In this paper

We denote the space occupied by interference ayth®s W€ eventu_ally use a surrogate fu_nction to approximate the
as the column span of a matrR, formed using the column rank function. However, before doing so, we first propose a
vectors from the se{H i, viy : i € {1,2 Gy, j e rank minimization reformulation of the above problem. Tisis

13,9) VUt A RN ’

(1,2,...,KY, 1 € {1,2,...,d}, i # g}, where we use the because it is easier to handle the rank function in the dlgect
notationv;; to denote thdth beamformer associated with the'@ther than in a constraint.
jth user in theith cell. IV. MIN-MAX RANK FORMULATION

1. RANK MINIMIZATION APPROACH To overcome the difficulty of handling rank constraints, we

reformulate the feasibility problem as a minimax optimiaat

yroblem where we minimize the maximum rank of the matrices
1, Ro,...,Rg. The minimax optimization problem can be

The conditions for linear interference alignment when sy
bol extensions over time or frequency are not allowed can
stated as follows [13]:

stated as
H o .o
U Hij,Vij =0V (i,5) # (9,k) (2) min  max rank(Ry)
rank(UA Hyp o Vo) = d ¥ (g, k). (3) vV 9€{1,2,...G}
' subjectto Vg (1:d,1:d) =1V (g,k)
Counting the number of equations and variables involved in
g d Ag(V)ZRng”

the conditions gives a preliminary check on the feasibitify

satisfying (2) and (3). When the number of variables exceathereA,(V) = (R,) captures the linear relationship between
the number of equations, the system is said to be proper.\AandR,. Since we assume the given system to be proper and
(G, K, M, N) network wherel DoF/user are desired is properfeasible, it is clear that the global optimum of this optiation

if (M +N) > (GK + 1)d [5], [13]. While not all proper problem is no more thailV — Kd. Further, it can be seen
systems are feasible [10], improper systems have been diaowthat any set of beamformers in the domain of this optimizatio
be almost surely infeasible [14]. In this paper, we only ideis problem that ensures the objective is no more thanr- Kd
proper systems that are known to be feasible. As stateceearlconstitutes a set of aligned solutions. In order to applyczad
feasibility of certain proper systems can be establishesutfh optimization techniques to solve this optimization prable
certain non-constructive techniques in algebraic gegmetr we first approximate rank using a surrogate function. Sévera



surrogate functions that are well suited for rank minimmat beamformers depends heavily on how the weighting matrices

problems are known, and they include functions such as auclare chosen. Nevertheless, by taking advantage of the kdgele

norm (convex envelope of rank), Schattefunction [12], [15], of the achievable DoF in the network, this min-sum formualati

log(det(-)) and —tr(inv(-)) [16]-[18]. While nuclear norm, can be effectively used to solve the min-max problem.

log(det(-)) and —tr(inv(-)) approximations lead to solving _ L )

a sequence of semidefinite programs, Schatéanction re- A Choice of Vieighting Matrices

quires solving a series of quadratic programs where a waight Solving affine-constrained rank minimization by iteraljve

Frobenius norm is iteratively minimized. solving a series of quadratic programs that minimize a weigh
With computational complexity in mind and drawing in-Frobenius norm is first discussed in [15], where the rank of a

spiration from the reweighted Frobenius norm minimizatiomatrix X is approximated using the Schatteriunction given

approach developed in [12] for the affine-constrained raiy tr(X# X +~I)?/2 for 0 < p < 1. Noting that the derivative

minimization problem, we approximate rank using a series of the Schatten function is given bypX(X#X 4 ~I)?/2~1,

weighted Frobenius norms. Note that the square of the Froliteis shown that the KKT conditions of the resulting affine-

nius norm of a matrixX is given by||X||%2 = tr(X*X) = constrained optimization problem can be satisfied by iteiyt

> 02, whereo,s are the singular values &. The weighted solving a sequence of weighted-Frobenius-norm minimozati

Frobenius norm is given byX(W1'/2)# ||, where we have problems. Mathematically, the affine-constrained rank imin

implicitly assumed thaX has more rows than columns aMd mization problem

is a positive definite weighting matrix. For certain choiacds

W, the square of the weighted Frobenius norm can be thought ) (9)

of as a weighted sum of the singular values %f'X i.e, subject to A(X) = b,

>~ ayo7. The choice of weighting matrices plays a crucial rolgy solved by iteratively solving the following optimizatio

in the effectiveness of the overall algorithm and is disedss proplem:

further detalil in the next section. For a given set of weigti

minimize rank(X)

matrices, approximating rank using the weighted Frobenius minimize tr(W,X"X) = |X(W,)'/?| % (10)
norm leads to the following optimization problem: subject to A(X) = b,
min  max IRy (W) /%) |3 where the weightsW, are updated using the update rule

v ge{l’Q_""’G} @) W, = (Xo)H(X,) + VSHI)%’l where the optimalX
subject to Vii(1:d,1:d) =1V (g,k) obtained after theth iteration is denoted aX, and~,., is the
Ag(V) = (Ry) Vg. regularization parameter used in updating the- 1)th weight.
L < i i
Note that we implicitly assume th&, has more rows than When0 <p < 1, the iterations Of. such a procedure are shown
: to converge. Further, the same iterative procedure cankedso

columns, if not we simply replack,, with Rf in the above applied and shown to converge when= 0, where the weight
formulation and all subsequent steps. We assume this toensikh 9 Br= o, g

that the number of singular values 8, and R, are the update rule is justified by showing that it solves a fixed point

: C9 eguation emerging from the KKT conditions that result when
same. Note that (7) is a convex optimization problem thg . . o
N rank of X is approximated akg(det(X"” X + ~1I)).
can be transformed to a convex minimization problem throug : .
In this paper, we sep to be zero and adopt the weight

the use of dual variables, which can then be optimized usin ) . . .
techniques such as the subgradient method. Since sutegtatff;ate rule given above with a few important modifications.

techniques are known to be slow to converge, we instead so gte that when weights are updated using the update rule

. : g+ = ((Rye))TRys)) + 1s11I)71, the weighting
the following quadratic program matrices can be interpreted to be weighting the singularesl

of the matrix(R(s)) ¥ Ry(s). To see this, let the singular value

€]
mini\;nize ZHR!]((WQ)I/Q)HH% decomposition ong(S)Qbe given byfl’g(s)Eg(ng(s), then
=1 (8) W) = (Qus) (B + vs+11)71(Qys)) ™. Thus, the
subject to: Vg (1:d,1:d) =1V (g,k) weighting matrixW (., 1) imposes a penalty that is inversely
A(V)=R, Vg proportional to the square of the magnitude of each non-zero
g9 - g .

singular value ofR,,). Since small, non-zero singular values
where we have replaced the maximum of a set of weightade heavily penalized, the iterative procedure is incérgiy to
Frobenius norms with their sum. Note that in the aboweduce them to zero, thus reducing the rankRof ).
quadratic programR, is just an auxiliary variable that can be The formulation in (8) does not incorporate any informa-
easily eliminated and that the second set of linear comsgraition on the expected rank of the interference matrices and a
are straightforward to satisfy. We are thus left with a sinpldirect application of the weighting procedure outlined \abo
unconstrained quadratic program that can be optimized Isyunlikely to generate the requisite number of interfeeenc
solving a system of linear equations. However, replacirg tifree dimensions due to the presence of many local minima.
min-max optimization problem with a min-sum optimizatiorFurther the formulation in (8) is not inherently inclined to
problem significantly alters the problem landscape and thgenerate the same number of interference free dimensions at
ability of this reformulation to recover the desired set ofach BSs, thereby leading to scenarios where we have more



than necessary number of interference free dimensionsma so
BSs and insufficient interference-free dimensions at oB%s.
The key observation of this paper is that we can modify the2
weight update rule to take advantage of the fact that we knovp
how many DoF are achievable per user in the network and t@
ensure that we obtain the requisite number of interferdrese-
dimensions at each BS in a balanced manner.

Since we are looking for transmit beamformers that en
sure rank(Ry) < N — Kd V g, we require z =
min(Kd, (GKd — N)) singular values ofR, to be zero.
To avoid local minima where rank dR, is not sufficiently
minimized, we couple the penalties associated with each

nsions

ference-f
[\~

—6—— IWFNM § = 0.1
—+— IWFNM § = 0.2
—+H—— IWFNM 6 = 0.3 )

Nunfber of inter

the z smallest singular values d®;,Ro,....Rq. Let {oy, : ILM

r = 1,2,...,min ((G—1)Kd,N)} be the set of singu-

lar vaIues ofR obtained after thesth iteration, ordered ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

in the descendlng order i.ea, > o441 Further, let % 100 200 300 400 500 600 700 800 900 1000
02, = ming, o2, and define the diagonal matri®, ) = Number of iterations

dlag([ Og1> 32, ceey U;(N—Kd)’ Ufnm, Ufnm, ceey Ufnm])- We set Fig. 1. Interference-free dimensions as a function of iiens for a(4,1,2,3)

2 fmes network with 1 data stream per user.
the weights for the(s + 1)th iteration to beW 1) =
(Qy(s)Dy(s)(Qq(s))” + 7s41I)~'. Such an update equally
penalizes each of the smallest singular values &, thereby corresponding to the smallest singular values of the matrix
encouraging the algorithm to seek aligned beamformersevh®, augmented with the interfering vectors from other users in
all z smallest singular values can be simultaneously set ttte same cell.
zero. The proposed iterative procedure can be summarized as

follows: V. SIMULATION RESULTS

In order to test our algorithm, we first considef41, 2, 3)
interference channel with one data stream per user. Thisrays
is known to be a proper and feasible system [13]. For perfect
interference alignment, we need interfering vectors toupgc
two or fewer dimensions at every receiver. Note that thisesys
is on the proper-improper boundary and has no redundant vari

1) Initialize W1y =1 Vg, sety =71, s = 1.
2) lterate overs:
a) Solve (8) using weightsW,, and denote the
optimal interference matrices &b,op:.
b) Compute the reduced SVD &,.,:, and denote it

ang(S S>(Q9 S>) ' ) ables. We compare the proposed iterative weighted-Frabeni
c) Setoy,;, = min,, 0g,, Whereo,, are the singular o minimization (IWFNM) algorithm with the interference
values ofR,(;) arranged in descend|n920rder leakage minimization (ILM) algorithm proposed in [3]. One
d) SQet D, o) T diag([og1: -+, 00(x_xa) iteration of ILM requires computing(K + 1)) eigenvalue
Tinins -+ Oomin))- decompositions to update the transmit and receive beamform
z times ers. One iteration of IWFNM requires solving an unconsedin
e) Updatey.

" _, Quadratic program involving=K (M — d)d variables andG&

f) UpdateW (., 1) = (Q_g(s)]_).q(s)(Qg(s)) +9D)7 singular value decompositions to compute the weighting ma-

g) Return to Step (2a) if < itermaz- trices. The convex optimization problem in (8) can be solved
The parametety acts as a regularization constant that makesalytically, or by using CVX, a package for specifying and
sure the weighting matrices are positive definite. Further, solving convex programs [19], [20]. The algorithms areedst
determines the penalty imposed on small non-zero singuter 200 channel realizations with channel coefficientsvdra
values. Typically,y is adaptively reduced with each iteratiori.i.d from CA/(0, 2). The algorithms are run for a fixed number
to prevent the algorithm from prematurely converging tcaloc of iterations, and the interference-free dimensions atgB8e
minima that do not completely align interference. As sutgbs counted as the number of singular valuestdf, H Vi >
in [12], we sety in the kth iteration to bey* = 7555, where 1072 for all g while subtracting the number of singu-
§ is a small positive constant. lar values of UL, [Ry, Hig1 ) Vo1, Hige—1),9) Vgk-1)s

When weights are updated according to the original upda@® ,(x+1,g) Vet - - - Higr,q) V] > 107°

rule given in [12], the algorithm can be shown to be converge.The simulation results are plotted in Fig. 1, where the
For the weight update rule proposed in this paper, no sushmber of interference-free dimensions for the overalvoek
convergence guarantees exist. Hence, we run the propoaeeraged over all the channel realizations are plotted as a
algorithm for a fixed number of iterationst¢r,,...). Once the function of the number of iterations. We opt to show the
transmit beamformers in the uplink are designed, the receinumber of interference-free dimensions rather than system
beamformers at thgth BS to recover the data streams ofevel performance metrics such as sum-rate because therform
the kth user can be chosen to be the left-singular vectass more directly related to the optimization objective ofsth



6 ' ' ' ' ' ' ' ' ' ] generating the requisite number of interference free dgioars.

The algorithm shows improved convergence when compared to
algorithms of similar complexity such as interference gk
minimization.
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