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Abstract—In this paper we investigate the spatially-normalized
degrees of freedom (sDoF) of 2-cell, multiple-input multiple-output
(MIMO) cellular networks with three users per cell having M
antennas at each user andN antennas at each base-station. We
characterize the optimal sDoF/user for all values ofM and N
and show that the optimal sDoF is a piecewise linear function,
with either M or N being the bottleneck. We assume all channels
to be generic, and establish achievability through linear transmit
beamforming strategies. We introduce the notion ofpacking ratio
that describes the interference footprint or shadow cast bya set
of transmit beamformers. Through this notion, we reinterpret the
alternating behavior of the optimal sDoF and attribute it to the
availability of sets of transmit beamformers with certain packing
ratios. We also derive a new DoF outer bound when5

9
≤

M

N
≤

3

4
.

I. I NTRODUCTION

Degrees of freedom (DoF) is a useful and tractable metric in
understanding the role of interference in wireless networks. The
degrees of freedom of wireless networks with same number of
antennas at all nodes have been studied in [1]–[5]. In this case,
since all nodes have the same number of antennas, schemes
based on decomposition and asymptotic interference alignment
can be used to achieve the optimal DoF. Establishing the optimal
DoF for networks with different number of antennas at different
nodes is more challenging. While the optimal DoF for the case
of K-user MIMO interference channel with different number of
antennas is studied in [6], [7], optimal DoF of MIMO cellular
networks with different number of antennas have not been
exactly characterized to the best of our knowledge. Some recent
progress has been made in establishing outer bounds [8]–[10]
and achievable schemes [10]–[14] that are optimal under specific
conditions.

In this paper we study 2-cell MIMO cellular networks with
three users per cell havingM antennas per user andN antennas
per base-station (BS). The 2-cell network with two users/cell
has already been studied in [15]. However, adding even one
additional user per cell can significantly alter the characteristics
of the network as is clearly seen with the 3-user MIMO
interference channel in [6]. Since we do not yet have a unifying
theory that applies to the DoF of 2-cell networks with any
number of users, studying networks with a small number of
users can provide valuable insight for such a development.

In our work, we assume all channels to be generic and
time varying. Further, similar in spirit to [6], we allow for
spatial extensions of a given network and study the spatially-
normalized DoF (sDoF) for allγ, whereγ denotes the ratio
M/N . Spatial extensions result in channels that are generic with

no additional structure — making them significantly easier to
study as compared to time or frequency extensions.

There are three main approaches to establishing achievability
of the optimal DoF of a network. These techniques include the
asymptotic interference alignment (AIA) scheme [1], the rational
dimensions framework [16] and transmit/receive beamformer
design over finite time/frequency extensions [1], [6]. In this
paper, the achievability of the optimal DoF is established through
careful construction of linear transmit beamformers over finite
space extensions.

In order to better understand the underlying structure of
interference alignment, we formalize the concept ofpacking
ratio. The packing ratio of a given set of beamformers is the ratio
between the number of beamformers in the set and the number
of dimensions these beamformers occupy at the interfering base-
station (BS). Packing ratios are useful in determining the extent
to which interference can be aligned at the interfering BS. For
example, for the 2-cell, 3-user/cell MIMO cellular network,
when γ ≤ 2/3, the best possible packing ratio is2 : 1, i.e., a
set of two beamformers corresponding to two users aligns onto
a single dimension at the interfering BS. This suggests thatif
we had sufficiently many such sets of beamformers, no more
than2N/3 DoF/cell are possible. This in fact turns out to be a
tight upper bound whenever5/9 ≤ γ ≤ 2/3. Further, it is easier
to visualize the achievability of the optimal sDoF using linear
beamforming through packing ratios. In addition, the exactcause
for the alternating behavior of the optimal sDoF where either
M or N is the bottleneck becomes apparent.

The DoF outer bounds are based on a set of bounds estab-
lished in [17] for general cellular networks withG cells andK
users per cell. For the network considered here, these bounds
are shown to be tight for allγ except whenγ ∈

[

5
9 ,

3
4

]

. For the
case whenγ ∈

[

5
9 ,

3
4

]

, we establish a new set of bounds that
are derived based on a proof technique first developed in [6].

II. PRELIMINARIES

A. System Model

We consider two interfering cells with three users in each
cell. Each user is assumed to haveM antennas and each BS
is assumed to haveN antennas. We denote the uplink channel
from the jth user in theith cell to thekth BS as theN ×M
matrix H(ij,k) and assume all channels to be generic and time
varying. In the uplink, thejth user in theith cell is assumed
to transmit theM × 1 signal vectorxij(t), which satisfies an
average power constraint1

T

∑T

t=1 E(‖xij(t)‖2) ≤ ρ. Thus, the



received signal at thekth BS is given by

yk =
∑

i∈{1,2}

∑

j∈{1,2,3}

H(ij,k)xij + nk (1)

wherenk is theN × 1 vector representing circular symmetric
additive white Gaussian noise∼ CN (0, I). The received signal
is defined similarly for the downlink. Since we consider two
statistically identical cells, we use the relative indicesi and ī
when referring to the two cells.

B. Existing Results for General MIMO Cellular Networks

First, we restate relevant results from [17] for establishing the
DoF outer bounds. We define a(G,K,M,N) cellular network
to be a MIMO cellular network withG cells,K users per cell,
M antennas per users andN antennas per BS.

Define the setQ1 = {2, 3, · · · , (G− 1)K} and the setQ2 =
{

1
G−1 ,

1
G−2 , · · · , 1

}

. The following theorem establishes an outer
bound on the DoF of MIMO cellular networks.

Theorem 2.1 ( [17] ) If a (G,K,M,N) cellular network sat-
isfiesM/N ≤ 1/q, whereq ∈ Q1 ∪ Q2, thenN/(K + q) is
an outer bound on the DoF/user of that network. If instead,
M/N ≥ 1/q for someq ∈ Q1 ∪ Q2, thenMq/(K + q) is an
outer bound on the DoF/user for that network.

The proofs of these outer bounds are based on a result in [2],
where MIMO wirelessX networks withA transmitters andB
receivers are considered.

Next, we state existing achievability results on the DoF of
MIMO cellular networks using one-sided decomposition fol-
lowed by the application of the asymptotic interference align-
ment scheme in [1].

Theorem 2.2 For the (G,K,M,N) cellular network, using
one-sided decomposition, MN

KM+N
DoF/user are achievable

when(G− 1)KM ≥ N .

One-sided decomposition refers to splitting the multi-antenna
users in multiple independent single-antenna users. Subsequent
to such a decomposition, the asymptotic interference alignment
scheme of [1] is used to prove achievability. Note that this is an
inner bound on the achievable DoF of the original network.

C. Spatially-normalized DoF

We restate the definition of spatially-normalized DoF as given
in [6].

Definition 2.1 Denoting the DoF/user of a(G,K,M,N) cellu-
lar network as DoF(M,N), the spatially-normalized DoF/user
is defined as

sDoF(M,N) = max
q∈Z+

DoF(qM, qN)

q
. (2)

Analogous to frequency and time domain symbol extensions,
the definition above allows us to permit extensions in space,
i.e., adding antennas at the transmitters and receivers while
maintaining the ratioM/N to be a constant. Unlike time or
frequency extensions where the resulting channels are block
diagonal, spatial extensions assume generic channels withno
additional structure. The lack of any structure in the channel
obtained through space extensions makes it significantly easier
to analyze the network.

III. M AIN RESULTS

We now present the main results in this paper. Define the
function fω(·) as

fω(M,N) = max

(

Nω

3ω + 1
,

M

3ω + 1

)

, (3)

whereω ≥ 0. Further, define the functionD(·) to be

D(M,N) =min
(

N,KM, f 1
3
(M,N), f 1

2
(M,N),

f 2
3
(M,N), f1(M,N)

)

. (4)

The following theorem characterizes an outer bound on the
DoF/user of the 2-cell 3-user/cell MIMO cellular network.

Theorem 3.1 The DoF/user of a 2-cell, 3-user/cell MIMO
cellular network withM antennas per user andN antennas
per BS is bounded above by

DoF/user≤ D(M,N) (5)

Note that since this outer bound is linear in eitherM or N ,
this bound is invariant to spatial normalization and hence is also
a bound on sDoF and not just DoF. The proof of this theorem
is presented in Section V.

The next theorem characterizes the sDoF/user of a 2-cell, 3-
user/cell MIMO cellular network.

Theorem 3.2 The spatially-normalized DoF of a 2-cell, 3-
user/cell cellular network withM antennas per user andN
antennas per BS is given by

sDoF/user= D(M,N) (6)

This result states that when spatial-extensions are allowed, the
outer bound presented in Theorem 3.1 is tight. The achievability
part of Theorem 3.2 is based on linear beamforming. The details
of the achievable scheme are presented in Section IV.

Fig. 1 captures the main results presented in the above
theorems and plots sDoF/user normalized byN as a function
of γ. Just as in the 3-user interference channel [6], there is an
alternating behavior in the sDoF with eitherM or N being the
bottleneck for a givenγ.

Fig. 1 also plots the boundary separating proper systems
from improper systems. Since designing transmit and receive
beamformers for linear interference alignment is equivalent
to solving a system of bilinear equations, such systems are
classified as being proper or improper based on whether the total
number of variables exceeds the total number of constraintsin
the system of equations or not [18]. Supposed DoF are desired
per user in a(G,K,M,N) cellular network, the network is said
to be proper if it satisfies 1+γ

GK+1 ≥ d
N

. SubstitutingG = 2 and
K = 2, a 2-cell 3-users/cell network is proper iff1+γ

7 ≥ d
N

. It is
seen from Fig. 1 that not all proper systems are feasible. In fact,
systems withγ ∈ {1/6, 2/5, 5/9, 3/4, 4/3} are the only ones
that lie on the boundary between proper and improper systems
and are feasible.

From Fig. 1, we can see that whenM/N ∈
{1/6, 2/5, 5/9, 3/4, 4/3}, neitherM nor N has any redundant
dimensions, and decreasing either of them affects the sDoF.
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Fig. 1: The sDoF/user (normalized byN ) of a 2-cell, 3-user/cell MIMO cellular network as a function of γ.

On the other hand, whenM/N ∈ {1/3, 1/2, 2/3, 1}, both M
andN have redundant dimensions, and some dimensions from
eitherM or N can be sacrificed without losing any sDoF. For
all other cases, only one ofM or N is a bottleneck.

Fig. 1 also plots the achievable DoF by first decomposing
the multi-antenna users into single-antenna users followed by
using the asymptotic alignment scheme of [1]. Interestingly, the
only cases where the decomposition based inner bound achieves
the optimal sDoF is when the bothM andN have redundant
dimensions i.e.,M/N ∈ {1/3, 1/2, 2/3, 1}.

IV. A CHIEVABILITY OF THE OPTIMAL SDOF

We now present the linear transmit beamforming strategy that
we use to achieve the optimal sDoF of the 2-cell 3-user/cell
MIMO cellular network. We consider achievability only in
the uplink as duality of interference alignment through linear
beamforming ensures achievability in the downlink as well.We
start by introducing a new notion called thepacking ratio to
describe a collection of transmit beamforming vectors.

Definition 4.1 Consider the uplink of a 2-cell network and letS
be a collection of transmit beamformers used by users belonging
to the same cell. If the number of dimensions occupied by
the signals transmitted using this set of beamformers at the
interfering BS is denoted byd, then the packing ratioη of this
set of beamformers is given by|S| :d.

As an example, consider a 2-cell, 3-user/cell cellular network
with 2 antennas at each user and 3 antennas at each BS. Suppose
we design two beamformersv andw for two different users in
the same cell so thatH11,2v = H12,2w, then the set of vectors
S = {v,w} is said to have a packing ratio of2 :1. As another
example, for the same network, consider the case whenM > N .
Since users can now zero-force all antennas at the interfering

BS, we can have a setS of beamformers with packing ratio
|S| : 0.

When designing beamformers for the 2-cell network, it is
clear that choosing sets of beamformers having a high packing
ratio is desirable as this reduces the number of dimensions
occupied by interference at the interfering BS. The existence of
beamformers satisfying a certain packing ratio is closely related
to the ratioγ (M/N ). For example, it is easily seen that when
γ < 2

3 , it is not possible to construct beamformers having a
packing ratio of3:1. Further even when beamformers satisfying
a certain packing ratio exist, there may not be sufficient sets of
them to completely use all the available dimensions at a BS.
In such a scenario, we need to consider designing beamformers
with the next best packing ratio.

Using the notion of packing ratios, we now describe the
achievability of the optimal DoF of the 2-cell 3-user/cell cellular
network. We first define the setP = {1:0, 3:1, 2:1, 3:2, 1:1}
to be the set of fundamental packing ratios for the 2-cell, 3-
user/cell cellular network. For any givenγ, our strategy is to
first construct the sets of beamformers that have the highest
possible packing ratio from the setP . If such beamformers do
not completely utilize all the available dimensions at the two
BSs, we further construct beamformers having the next best
packing ratio inP until all the dimensions at the two BSs are
either occupied by signal or interference. This is illustrated in
the following.

We first consider the case when2/3 < γ < 3/4. Note that
sinceM < N , no transmit zero-forcing is possible. Further,
note that each user can access onlyM of the N dimensions
at the interfering BS. Since we assumed all channels to be
generic, and2M > N , the subspaces accessible to any two
users overlap in2M−N dimensions. This2M−N dimensional
space overlaps with theM dimensions accessible to the third
user in3M−2N dimensions. Note that such a space exists as we



TABLE I: The sets of beamformers and their corresponding packing ratios used to prove achievability of the sDoF for different values ofγ.

γ
Set of beamformers # signal-vectors/cell

(DoF/cell)Packing ratio # sets Packing ratio # sets

0 < γ < 1
6

1 :1 3M – – 3M

1
6
≤ γ < 1

3
1 :1 N

2
– – N

2

1
3
≤ γ < 2

5
3 :2 3M − N 1 :1 6N−15M

2
3M
2

2
5
≤ γ < 1

2
3 :2 N

5
– – 3N

5

1
2
≤ γ < 5

9
2 :1 3(2M − N) 3 :2 10N−18M

5
6M
5

5
9
≤ γ < 2

3
2 :1 N

3
– – 2N

3

2
3
≤ γ < 3

4
3 :1 3M − 2N 2 :1 3N − 4M M

3
4
≤ γ < 1 3 :1 N

4
– – 3N

4

1 ≤ γ < 4
3

1 :0 3(M − N) 3 :1 N − 3M
4

3M
4

4
3
≤ γ 1 :0 N – – N

have assumed2/3 < γ. Thus, we can construct3M − 2N sets
of three beamformers (one for each user) that occupy just one
dimension at the interfering BS and thus have a packing ratio
of 3:1. Assuming the same strategy is adopted for users in both
cells, at any BS, signal vectors occupy a total of3(3M − 2N)
dimensions while interference occupies3M − 2N dimensions.
Thus a total of4(3M − 2N) dimensions are occupied by signal
and interference. Since4(3M−2N) < N whenever4M < 3N ,
we see that such vectors do not completely utilize all theN
dimensions at a BS.

In order to utilize the remaining9N − 12M dimensions,
we additionally construct beamformers with the next highest
packing ratio (2 :1). Let M ′ = M − (3M − 2N) = 2N − 2M
denote the unused dimensions at each user. At the interfering BS,
each pair of users has2M ′−N dimensions that can be accessed
by both users. Note that since2M ′−N = 2(2N − 2M)−N =
3N −2M > 0, such an overlap exists almost surely. For a fixed
pair of users in each cell, we choose(3N − 4M) sets of two
beamformers (one for each user in the pair) whose interference
aligns onto a single dimension, so that each set has a packing
ratio of 2 : 1. After choosing beamformers in this manner,
we see that signal and interference span allN dimensions at
each of the two BSs. Through this process, each BS receives
3(3M − 2N)+2(3N− 4M) signaling vectors while interfering
signals occupy(3M − 2N)+ (3N− 4M) dimensions. We have
thus shown that3(3M−2N)+2(3N−4M) = M DoF/cell are
achievable. An averaging argument ensures thatM/3 DoF/user
are achieved.

When 3/4 ≤ γ ≤ 1, all three users of a cell can access a
3M−2N dimensional space at the interfering BS, thus3M−2N
sets of three beamformers having a packing ratio of3 : 1 are
possible. Note that3 : 1 is still the highest possible packing
ratio. If users in both cells were to use such beamformers, signal
and interference from such beamformers can occupy at most
4(3M − 2N) > N dimensions at any BS. Thus, when3/4 ≤
γ < 1, we have sufficient sets of beamformers with packing
ratio 3 : 1 to use all available dimensions at the BSs. Choosing
N/4 such sets provides us with3N/4 DoF/cell.

Such an approach to designing the linear beamformers pro-
vides insight on why the optimal sDoF alternates between
M and N . When γ is such that there are sufficient sets of
beamformers having the highest possible packing ratio inP ,

it is the number of dimensions at the BSs that proves to be a
bottleneck and the DoF bound becomes dependent onN . On
the other hand, when there are not enough sets of beamformers
having the highest possible packing ratio inP , we are forced to
design beamformers with a lower packing ratio so as to use all
available dimensions at the two BSs. Since, for a fixedN , the
number of sets of beamformers having the highest packing ratio
is a function ofM , the bottleneck now shifts toM . We thus see
that for a large but fixedN , as we gradually increaseM , we
cycle through two stages— the first stage where beamformers
with a higher packing ratio become feasible but are limited to a
small number, and then gradually, the second stage where there
are sufficiently many such beamformers. AsM is increased
even further, we go back to the scenario where the next higher
packing ratio becomes feasible however with only limited set of
beamformers, and so on.

The design strategy described for2/3 < γ ≤ 1 is applicable
to other intervals ofγ as well. When1/3 < γ ≤ 1/2, we
design as many sets of beamformers having packing ratio3 : 2
as possible and then use beamformers having a packing ratio of
1 : 1 (random beamforming) to fill any unused dimensions at
the two BSs. When1/2 < γ ≤ 2/3 we first design as many
sets of beamformers having packing ratio2 : 1 as possible and
then use beamformers having a packing ratio of3 : 2. When
γ ≤ 1/3, it is easy to see that simple zero-forcing strategy
suffices. Finally, whenγ ≥ 1, we first design beamformers that
zero-force the interfering BS (packing ratio1 : 0), and then use
beamformers having a packing ratio of3 : 1 to fill any remaining
dimensions at each BS. In order to keep the presentation short,
we do not go into the exact details for these cases. In Table I,
we summarize the strategies used for different intervals ofγ,
and list the number of sets of beamformers of a certain packing
ratio required to achieve the optimal DoF along with the DoF
achieved per cell. Note that fractional number of sets can always
be made into integers as we allow for spatial extensions.

V. OUTER BOUND ONDOF

The outer bound on the DoF can be categorized into three
cases.

Case i: (0 ≤ γ ≤ 1/6) & (4/3 ≤ γ): The outer bounds
in this case follow by letting the two BSs cooperate and then



considering the DoF bounds for the multiple-access channeland
the broadcast channel.

Case ii:(1/6 ≤ γ ≤ 5/9) & (3/4 ≤ γ ≤ 4/3): The bounds in
this case are derived from Theorem 2.1. Specifically, we consider
q = 3 for 1/6 ≤ γ ≤ 2/5, q = 2 for 2/5 ≤ γ ≤ 5/9, andq = 1
for 3/4 ≤ γ ≤ 4/3.

Case iii: (5/9 ≤ γ ≤ 3/4): We derive a new set of outer
bounds on the DoF for this case. Our approach to deriving these
new bounds is inspired by the approach taken in [6]. The exact
details of this derivation are presented in the following section.

Note that since the outer bounds scale linearly in the trans-
mit/receive antennas, these are also bounds on the sDoF/user of
this network.

A. DoF Outer Bound when59 ≤ γ < 3
4

In this section, we show that whenever5
9 ≤ γ ≤ 3

4 , no more
than max

(

2N
9 , M

3

)

DoF/user are possible. Since there is no
duality associated with the information theoretic proof presented
here, we need to establish this result separately for uplinkand
downlink. Due to space constraints, we only present the proof
for the uplink. Similar to [6], we first perform an invertiblelinear
transformation at the users and the base-stations. The linear
transformation involves multiplication by a full rank matrix at
each user and BS. Let theM×M transformation matrix at user
ij be denoted asUij and theN ×N transformation matrix at
BS ī be denoted asBī. Using these transformations the effective
channel between userij and BS ī is given byBīH(ij,̄i)Uij .
Subsequent to this transformation, we identify genie signals that
enable the BSs to decode all the messages in the network and
set up a bound on the sum-rate of the network. We start by
considering the case when5/9 ≤ γ ≤ 2/3.

1) DoF outer bound when5/9 ≤ γ ≤ 2/3: We divide the
set ofN antennas at BS̄i into three groups and denote them
as īa, īb and īc. The sets̄ia and īc contain the first and last
N −M antennas each while setīb has the remaining2M −N
antennas. Let theM antennas at userij be denoted asijk where
k ∈ {1, 2, · · · ,M}. Using a similar notation for BS antennas,
let H(ij,̄ip:̄iq) represent the channel from userij to the subset
of BS antennas from thepth antenna to theqth antenna.

We first focus on theN×M channel from useri1 to BS ī. We
set the firstN −M rows ofBī to be orthogonal to the columns
of Hij,̄i. SinceH(ij,̄i) spans onlyM of theN dimensions at BS
ī, it is possible to choose such a set of vectors. Similarly, the next
2M−N andN−M rows ofBī are chosen to be orthogonal to
useri2 and useri3 respectively. Since all channels are assumed
to be generic, matrixBī is guaranteed to be full rank almost
surely.

On the user side, useri1 inverts the channel to the lastM
antennas of BS̄i, i.e.,Ui1 = (H(i1,̄iN−M+1:̄iN))

−1, while user
i3 inverts the channel to the firstM antennas of BS̄i, i.e.,
Ui3 = (H(i1,̄i1:̄iM))

−1. We let Ui2 = I. The signal structure
resulting from such a transformation is shown in Fig. 2.

Let mij be the message from userij to BS ī. This message
is mapped to aM × n codeword xn

ij = {xn
ijk : k ∈

(1, 2, · · · ,M)}, wheren is the length of the code. We denote
the rate to userij as Rij , the total sum rate of the network
asRsum and the collection of all messages in the network as
{mij}.

īa

īb

īc

N −M

2M −N

N −M

i1

i2

i3

M

M

M

Sīa(xi2, xi31:i3(N−M))

Sīb(xi11:i1(2M−N), xi3(N−M+1):i3M )

Sīc(xi1(2M−N+1):i1M , xi2)

Users in Celli Base-station̄i

Fig. 2: The signal structure obtained after linear transformation for the
case whenγ ≤ 2/3. Note that the figure does not include signals from
the same cell.

Now, consider providing the set of signalsG1 =
{x̃n

i2, x̃
n
i11:i1(2M−N)} to BS ī. We usex̃n to denotexn + zn

wherezn is circular symmetric Gaussian noise that is artificially
added to the transmitted signalxn. Since we seek to establish
a converse, we assume that BSī can decode all the messages
from its users. After decoding and subtracting these signals from
the received signal, the resulting signals at the three antenna
sets are given in Fig. 2 whereSī∗(·) represents a noisy linear
combination of its arguments. GivenG1, we can subtractxn

i2

from Sīc(xi1(2M−N+1):i1M , xi2) and along withx̃n
i11:i1(2M−N)

from G1, we can decodemi1 subject to noise distortion. After
decodingmi1, and subtractingxn

i1 and xn
i2 from the received

signal,mi3 can also be decoded subject to noise distortion. Since
BS ī can recover all the messages in the network givenyn

ī
and

G1 subject to noise distortion, we have

nRsum

a

≤ I
(

{mij};y
n
ī ,G1

)

+ no(log ρ) + o(n)

b

≤ Nn log ρ+ h(x̃n
i2, x̃

n
i11:i1(2M−N)|y

n
ī ) + no(log ρ) + o(n)

c

≤ Nn log ρ+ nRi2 + h(x̃n
i11:i1(2M−N)) + no(log ρ) + o(n)

(7)

where (a) follows from Fano’s inequality, (b) follows from
Lemma 3 in [6] and (c) follows from the fact that conditioning
reduces entropy.

Next, consider providing the set of signalsG2 =
{x̃n

i3, x̃
n
i1(2M−N+1):i1M } to BS ī. After subtractingx̃n

i3 from
the received signal, the BS can recovermi2 from observations at
antenna sets̄ia and īc subject to noise distortion. Subsequently,
BS ī can also recovermi1 subject to noise distortion. Since BS
ī can recover all messages when provided with the genie signal
G2, using similar steps as before, we obtain

nRsum ≤ Nn log ρ+ nRi3 + nRi1 − h(x̂n
i11:i1(2M−N))

+ no(log ρ) + o(n) (8)

Adding (7) and (8) we get,

2nRsum ≤2nN log ρ+
∑

j=1,2,3

nRij + no(log ρ) + o(n) (9)

Using a similar inequality for BSi, we can write

3nRsum ≤4nN log ρ+ no(log ρ) + o(n) (10)

Letting n → ∞ andρ → ∞, we see that DoF/user≤ 2N
9 .



īa
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Fig. 3: The signal structure obtained after linear transformation when
γ ≥ 2/3. The figure does not include signals from the same cell.

2) DoF outer bound when2/3 ≤ γ ≤ 3/4: In this case, we
again group the antennas at BSī into three groups exactly as
before. TheM antennas at each user are also grouped into three
sets as shown in Fig. 3. The linear transformation at BSī is also
same as before, i.e., each group of antennas zero-forces oneof
three users.

On the user side,Ui1 for useri1 is chosen such thati1a zero-
forcesīb while i1b andi1c both zero-forcēic. Similarly,Ui3 is
chosen so thati3c zero-forces̄ib, while i3b and i3c both zero-
force īa and finally Ui2 is chosen such thati2a zero-forces
īa, while i2b and i2c both zero-forcēic. The resulting signal
structure at BS̄i after removing signals from Cell̄i is given in
Fig. 3.

Now, consider providing the set of signalsG3 =
{x̃n

i1, x̃
n
i2b, x̃

n
i2c} to BS ī. After decoding the messages from

users in Cell̄i, we see that usingG3, we can first decodemi2

followed by mi3, subject to noise distortion. Since BS̄i can
recover all the messages in the network givenyn

ī
andG3, subject

to noise distortion, we have

nRsum

≤ I
(

{mij};y
n
ī ,G1

)

+ no(log ρ) + o(n)

≤ Nn log ρ+ h(x̃n
i1, x̃

n
i2b, x̃

n
i2c|y

n
ī ) + no(log ρ) + o(n)

≤ Nn log ρ+ nRi1 + h(x̃n
i2b, x̃

n
i2c|x̂

n
i2a) + no(log ρ) + o(n)

≤ Nn log ρ+nRi1 +nRi2 −h(x̂
n
i2a) + no(log ρ) + o(n),

(11)

wherex̂n
i2a denotesxn

i2a corrupted by channel noise.
Next, we consider the genie signalG4 = {x̃n

i3, x̃
n
i2a, x̃

n
i2b}. It

can once again be shown that BSī can recover all the messages
in the network givenyn

ī
andG4. Going through similar steps as

before, it can be shown that

nRsum ≤ (3M −N)n log ρ+ nRi3 + h(x̃n
i2a)

+ no(log ρ) + o(n) (12)

Adding (11) and (12), we get

2nRsum ≤3Mn log ρ+
∑

j=1,2,3

nRij + no(log ρ) + o(n) (13)

By symmetry we must also have an analogous inequality involv-
ing the ratesRīj , and adding these two inequalities, we get

3nRsum ≤6Mn log ρ+ no(log ρ) + o(n) (14)

Letting n → ∞ andρ → ∞, we see that DoF/user≤ M
3 .

VI. CONCLUSION

This paper studies the DoF of a 2-cell,3-users/cell network
with M antennas at each user andN antennas at each BS. The
achievability is established through linear transmit beamforming
and finite spatial extensions. We formalize a concept called
packing ratio that provides insight on achievability through
linear beamforming and on the alternating behavior of the DoF
outer bound. We also derive a new DoF outer bound when
5/9 ≤ γ ≤ 3/4.
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