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Abstract—This paper addresses the issue of blind estimation of
common phase error (CPE) in OFDM systems affected by phase
noise (PHN). Common approaches to blind CPE detection detect
the symbols, and estimates the phase noise in an iterative manner.
An important assumption that these decision-directed algorithms
make is that a majority of the symbols detected in the first
iteration, while ignoring the presence of phase noise, havebeen
detected correctly. This assumption fails to hold under scenarios
of high CPE and leads to a premature error floor. In this paper
we dispense with the assumption that most of the symbols have
been detected correctly and instead associate with each symbol a
certain probability of having been detected correctly. Through the
introduction of an auxiliary binary variable that indicate s whether
the right decision on a symbol has been made or not, we design a
new algorithm to estimate CPE. This algorithm is robust to high
CPE scenarios and is able to lower the error floor seen at high
SNRs.

I. I NTRODUCTION

The demand for higher data rates has led to OFDM becoming
the technology of choice for next generation wireless standards
such as WiMAX (Worldwide Interoperability for Microwave
Access, IEEE 802.16) and LTE (3rd Generation Partnership
Project Long Term Evolution, put forth by European Telecom-
munications Standards Institute). This has brought into focus
the various implementation issues that are critical in an OFDM-
based system. In particular, phase noise (PHN) is an impairment
that needs special attention because unlike other impairments,
it changes substantially over an OFDM frame and cannot be
compensated for in the training stage. In this paper we address
the issue of blind CPE estimation (i.e. without the use of pilot
or training symbols) which is an important practical function
in OFDMA, because then only a small number of sub-carriers
may be allocated to one user, and hence it would be bandwidth-
inefficient to insert pilots in every frame of every user.

PHN arises from imperfections in the frequency synthesizer
that result in random fluctuations in the phase of the output
signal. In this paper we assume phase noise to be a first-order
auto-regressive (AR(1)) process as suggested in [1] for the
IEEE 802.11g standard. The effect of PHN has been studied
extensively [2]–[4]. The effect of PHN can be split into two:
the rotation of all the sub carriers by a certain angle calledthe
common phase error and the leakage of neighboring sub carriers
resulting in inter carrier interference (ICI). CPE is the average
of the PHN sequence spanning an OFDM symbol. In this paper
we deal exclusively with blind CPE estimation which plays a
critical role in the effectiveness of any other PHN compensation
scheme; pilots based estimation schemes have been studied in
[5]–[7]. We envision this work as a precursor to any joint PHN

and symbol estimation algorithm that might be employed at the
receiver, such as the one in [8].

Situations that call for blind estimation occur frequently. For
example, in the WiMAX standard, one in every three symbols
transmitted by a user to the base station is devoid of pilots.This
motivates the need for a robust blind CPE estimator, designed
explicitly to work in the absence of pilots. The crux of the
algorithm suggested in this paper is the realization that not all
symbols are equally prone to errors. Symbols on subcarriersthat
see a better channel are less susceptible to errors due to additive
noise (ADN) while symbols with smaller magnitude are less
susceptible to errors resulting from phase noise. By separating
these two effects, we are able to derive an expression for the
probability of correct detection of any symbol in an OFDM
frame. This allows us to identify the most reliable symbols
and use them as virtual pilots, with the aid of the bit-flipping
sequential likelihood ascent search [9] algorithm.

The paper is organized as follows. Section II sets up the
received signal model and discusses the consequences of phase
noise on the received signal. Section III discusses the new
algorithm that is developed to estimate CPE. Section IV presents
the simulation results. All vectors and matrices are denoted in
bold and estimates of unknown parameters are represented with
a hat on top of the variable.

II. RECEIVED SIGNAL MODEL

A. The received signal

In this work, we consider the detection of an OFDM
symbol transmitted over a block fading frequency selective
channel, where the channel stays constant over the duration
of one OFDM symbol. We also assume that perfect frame
synchronization, including carrier frequency recovery have
been established in the training stage. We further assume that
current channel conditions have been estimated during the
training phase and that channel state information is available
on the receiver side. Algorithms that can estimate the channel
in the presence of PHN and carrier frequency offset have been
presented in [10], [11]. In the data detection stage we assume
that the received signal has been affected by PHN in addition
to the channel and additive noise. The received signal for such
a scenario in the discrete domain after appropriate sampling
and removal of the cyclic prefix is given by

r = FPFHHd + n (1)

Here,F is anN×N DFT matrix with the(l, m)th entry given by
Flm = (1/

√
N)e−(2πj(l−1)(m−1)/N), P is the diagonal matrix



given by diag(ejθ) ≈ diag(1+jθ), whereθ is the PHN sequence
andH = diag(h) is the channel matrix in the frequency domain.
The vectord is the corresponding symbol sequence andn is
complex white Gaussian noise with varianceσ2 each in the in-
phase and quadrature dimensions.

The phase noise process is assumed to be an AR(1) process.
Characteristics of such a process are given in [8]. Denotingthe
covariance matrix of a length-N sequence of PHN asΦ, it can
be shown that the sample meanθ̄ given by

θ̄ =
1

N

N
∑

k=1

θ[k]. (2)

is a zero mean Gaussian random variable with varianceσ2
θ̄

=

1T
Φ1/N2 [11].
If one were to represent the received vectorr as

[r0, r1, . . . , rN−1]
T , then,

rk = c0dkhk +

N−1
∑

l=0,l 6=k

dlhlc(l−k)mod N + νk. (3)

Here, the vectorc = [c0, c1, . . . , cN−1]
T is given by

(1/
√

N)FHp (wherep = ejθ) i.e. the frequency domain repre-
sentation of the PHN sequence. It can be shown thatν is an un-
correlated white noise process withνk ∼ CN (0, 2σ2). Equation
(3) clearly illustrates how PHN affects the received signal. Note
thatc0 is the CPE i.e.1+ 1

N

∑N
k=1 θ[k] ≈ ejθ̄ (under small angle

assumption), and its effect is to rotate every received symbol
by the average phase angleθ̄. Further, it can be shown that the
ICI term is well approximated as a zero mean Gaussian random
variable with variance( 1

N tr(FH
ΦF)−σ2

θ̄
)E[|d|2]E[|h|2], where

E[|d|2] is the average symbol energy andE[|h|2] is the variance
of the channel gain on a sub-carrier.

B. Importance of CPE Estimation

CPE rotates the symbol constellation, and without pilots it
is challenging to distinguish between the actual symbol being
transmitted with a large phase error, and the neighboring symbol
being transmitted with a small phase error. Therefore, even
sophisticated methods such as the one proposed in [8] for PHN
sequence estimation and compensation require that the CPE be
known to a large extent.

If CPE and PHN are not compensated at all, then the symbol
error probability will be unacceptable – for example, for the 64-
QAM constellation a rotation of 9◦ causes a symbol error with
probability 0.43 even in the absence of noise. Coupled with
scenarios such as the WiMAX uplink in which some OFDM
symbols contain no pilots, it is thus imperative for blind CPE
estimation methods to be devised. We describe such a technique
in the next section.

III. CPE ESTIMATION

A. Existing approaches to CPE estimation

SupposeSp were to represent the set of indices corresponding
to the pilots in an OFDM symbol, the ML estimate of CPE is
given as (under small̄θ assumption) [12]

ˆ̄θML = ℑ
(
∑

k∈Sp
rk(hkdk)∗

∑

k∈Sp
|hkdk|2

)

. (4)

With prior knowledge of the statistics of PHN and ADN, we
can also compute the MAP estimate to be

ˆ̄θMAP = ℑ
(

σ2
θ̄

∑

k∈Sp
rk(hkdk)∗

σ2 + σ2
ICI + σ2

θ̄

∑

k∈Sp
|hkdk|2

)

. (5)

If there are no pilots embedded in an OFDM symbol, then one
can make a preliminary estimate of the symbols while ignoring
the PHN and use these symbol estimates as virtual pilots to
compute the CPE. In general, all the symbol decisions are used
while estimating CPE.

B. Blind CPE estimation under detection uncertainty

Not all symbols are detected correctly in a practical scenario.
Even in the high SNR regime, if the CPE exceeds a certain
threshold, detection errors are likely to be made. The estimates
in the previous subsection do not take this into consideration.
In this section we present a more careful formulation of the
CPE estimation problem.

We first introduce an auxiliary binary random vectorI . Ik,
the kth entry of the vectorI is 1 if the kth symbol has been
detected correctly and is 0 otherwise. Rather than looking at
estimation ofθ̄ in isolation, we look at jointly estimatinḡθ and
I as follows:

(ˆ̄θ, Î ) = arg max
θ̄,I

p(θ̄, I|r , d̂) (6)

= arg max
θ̄,I

p(r |θ̄, d̂, I)p(I , θ̄|d̂) (7)

= arg max
θ̄,I

p(r |θ̄, d̂, I)p(I |θ̄, d̂)p(θ̄) (8)

≈ arg max
θ̄,I

p(r |θ̄, d̂, I)p(I |d̂)p(θ̄) (9)

= arg max
θ̄,I

p(r |θ̄, d̂, I)p(θ̄)

N
∏

k=1

p(Ik|d̂k) (10)

Equation (9) follows from (8) if we treat̄θ andI as indepen-
dent variables. While this is clearly not true, it simplifiesthe
maximization greatly. For the moment, we just assume that for
any d̂k, the value of p(Ik|d̂k) is known to us. Now, (10) can be
written as

(ˆ̄θ, Î ) =arg max
θ̄,I

[

− wI ln(2π(σ2 + σ2
ICI)) +

N
∑

k=1

ln(p(Ik|d̂k))

− 1

2σ2
θ

(θ̄)2− 1

2(σ2 + σ2
ICI)

∑

{k:Ik=1}
|yk − (1+jθ̄)hkd̂k|2

]

(11)

=arg max
θ̄,I

(

aI (θ̄)
2 + bI (θ̄) + cI

)

(12)



where,

aI =

[

− 1

2σ2
θ

−
N
∑

k=1

1

2(σ2 + σ2
ICI)

Ik|hkd̂k|2
]

(13)

bI =

[

N
∑

k=1

1

σ2 + σ2
ICI

Ikℑ{(yk − hkd̂k)(hkd̂k)∗}
]

(14)

cI =

N
∑

k=1

Ik

{

− ln(2π(σ2 + σ2
ICI)) −

|yk − hkd̂k|2
2(σ2 + σ2

ICI)
+

ln

(

P (Ik = 1|d̂k)

P (Ik = 0|d̂k)

)}

+
N
∑

k=1

ln
(

P (Ik = 0|d̂k)
)

. (15)

In (11), wI is the weight of the vectorI . The maximization
above involves a search over the continuous parameterθ̄ and all
possibleN -tuples of the random vectorI . This is an instance of
a Mixed Integer Non Linear Problem (MINLP) and solving for
the optimum in such cases is not easy. In this particular case,
since the problem is convex in the continuous parameterθ̄ when
the binary vector is held constant, there are methods that can
find the optimal solution [13]. But, as pointed out in [13], such
methods are computationally intensive and are not suited for
real time applications. With simplicity of optimization inmind,
we adopt a sequential likelihood ascent search (LAS) algorithm
[9]. The algorithm can be broken down into the following steps.

1) Sort the subcarriers in decreasing order of the tolerance
to CPE of the symbolŝdk. (CPE tolerance is discussed
later).

2) Assume that the firstl0 subcarriers after sorting have been
detected correctly. Typical value forl0 can be around 4
to 8. This forces the firstl0 entries inI to be 1. Set all
other entries inI to 0.

3) Find theθ̄ that maximizes the likelihood function in (11).
Toggle the(l0 + 1)th entry in I to 1 and find thēθ that
maximizes (11). If the new maximum is greater than the
previous maximum, fix the(l0 + 1)th entry to 1 else set
it to 0.

4) Proceed as in step 3 for all the remaining subcarriers in
a sequential manner until all subcarriers are exhausted.

At the end of the above procedure, we end up with a vector
I that gives a list of all the subcarriers that have been taken
into consideration for the estimation ofθ̄, and an estimate of̄θ
obtained through a local search. While this estimate ofθ̄ might
not be the optimal estimate, it is hoped that the initialization
ensures that the process converges to a point very close to the
global optimum.

C. Computing p(Ik|d̂k)

One basic assumption we make is that|dk| = |d̂k|. Since
phase noise only alters the phase of the transmitted symbol,
this assumption holds in the regime where errors due to CPE
dominate over those due to additive noise (ADN). Also, the
discussion that follows only applies to constellations with square
decision boundaries such as 16-QAM, 64-QAM etc. Under the
above assumptions, Figure 1 illustrates the tolerance to CPE of
a symbold̂k that is |d̂k| distance away from the origin with the
decision boundaryB aroundd̂k forming a square of side ‘s’.

We define the tolerance to CPĒθtol to be the maximum angle
of rotation that a symbol can tolerate before it falls outside

θcirθtol
θin

d̂k

B

|d̂k|

Fig. 1. Phase noise tolerance of a symbol with a square decision region.

the decision boundary. It is easy to see from Figure 1 that
the tolerance to CPE of such a symbol lies between the angle
subtended by the incircle (θin) and the circumcircle (θcir) of the
decision regionB at the origin. It is equal to the angle subtended
by the incircle when the symbol is very close to one of the axes
and is equal to the angle subtended by the circumcircle when
the symbol is close to the 45◦/135◦ lines. Hence, for a symbol
that is |d̂k| away, one can write

sin−1

(

s

2|d̂k|

)

≤ |θ̄tol| ≤ sin−1

(

s√
2|d̂k|

)

. (16)

Note that this expression holds regardless of the value of the
fading coefficient at each sub-carrier, and hence for the entire
OFDM symbol. Since the effect of the channel parameter is
to either shrink or expand the constellation (rotation is easily
compensated), this has the same effect on both ‘s’ as well as
the distance of the symbols from the origin and hence, the CPE
tolerance remains unchanged.

Now, with regard to symbol detection, the combined effect of
PHN and ADN leads to four scenarios. Scenarios that lead to a
correct decision include the situation where the CPE rotation is
small enough to keep the transmitted symbol within the decision
boundary and the ADN too is small enough to ensure correct
decision. The other scenario that leads to correct decisionis
when the CPE is high enough to rotate the symbol to a point
outside the decision boundary, but the ADN is such that it brings
the received symbol back within the decision region. Let us
call the former event as E1 and the latter as E2. Computing the
probabilities P(E1) and P(E2) gives us the probability of correct
decision. Clearly, P(E2) is negligible in comparison to P(E1) and

2|h|

2|h||h|d
ejθ̄|h|d

B

Fig. 2. Effect of PHN and ADN on a symbol

hence we focus on computing P(E1) in the rest of this section.
At this stage we would also like to introduce two classes of



symbols for the convenience of the discussion that is to follow.
We define a symbol to be of type I if it is on either the real or
imaginary axis and type II if it is on the45◦/135◦ lines.

Assume that a symbold was transmitted on a subcarrier with
channel parameterh associated with it. LetΩ represent the set
of all θ̄ that keep|h|d within the decision boundaryB, then
Ω = [−θ̄tol θ̄tol]. Let Nrθ̄ and Niθ̄ represent the set of values
of the additive noise in the quadrature and in-phase directions
that keepejθ̄|h|d within B(refer to figure (2)). We can write

P (E1) =

∫

θ̄∈Ω

P (Nrθ̄)P (Niθ̄)p(θ̄)dθ̄ (17)

=2

∫ θ̄tol

0

P (Nrθ̄)P (Niθ̄)p(θ̄)dθ̄ (18)

The trajectory taken by a symbol as̄θ increases until it leaves
the decision regionB is dependent on the exact value of the
symbol and not just its magnitude. Since the knowledge of the
exact symbol is not available at the receiver, we consider two
extreme trajectories, the one along a diagonal ofB and the other
along a line parallel to one of the sides and passing through the
center ofB and treat P(E1) to be the average of the integral
over these two trajectories. The first trajectory corresponds to
type II symbols while the second trajectory corresponds to type
I symbols. For type I symbols we setθ̄tol = sin−1

(

s

2|d̂k|

)

and

for type II symbols, we set̄θtol = sin−1
(

s√
2|d̂k|

)

.
Since an explicit computation of the integral is not possible

along either trajectory, we approximateP (Nrθ̄)P (Niθ̄) using
linear functions. But first, we make some observations on the
productP (Nrθ̄)P (Niθ̄). Note that for any symbol, the product
P (Nrθ̄)P (Niθ̄) monotonically decreases as̄θ increases. It

takes the highest value ofK0 =
(

1 − 2Q
(

|h|
σ

))2

at θ̄ = 0

and decreases to approximatelyK2 =
(

0.5 − Q
(

2|h|
σ

))2

at θ̄ = θ̄tol for type II symbols and decreases to
K1 =

(

0.5 − Q
(

2|h|
σ

))(

1 − 2Q
(

|h|
σ

))

at θ̄ = θ̄tol for
a type I symbol.

Note that for a type II symbol, both,P (Nrθ̄) andP (Niθ̄) are
of the form

P (Nrθ̄) =

∫ 1

σ
(|h|+ 1√

2
|hd| sin(θ̄))

− 1

σ
(|h|− 1√

2
|hd| sin(θ̄))

g(x)dx (19)

where g(x) is the standard Gaussian distribution. For type I
symbols, one ofP (Nrθ̄) or P (Niθ̄) is of the above form while
the other is a constant and is equal to

P (Nrθ̄) =

∫ 1

σ
|h|

− 1

σ
|h|

g(x)dx. (20)

Further, note that for large|h| the RHS of (19) remains almost
constant over a long range ofθ̄ until θ̄ equals a certain critical
value ofθ̄c. To quantify this better we definēθc to be that angle
below which the absolute value of the lower limit in the integral
in (19) is greater than 3 standard deviations. Thus,

θ̄c = sin−1

{√
2

|d|

(

1 − 3σ

|h|

)

}

. (21)

Since a negativēθc does not makes sense, the critical angle is
defined only when|h| > 3σ. Thus whenever|h| > 3σ, we can
split the integral in (17) into two parts:

P (E1) =

∫

θ̄∈Ω

P (Nrθ̄)P (Niθ̄)p(θ̄)dθ̄

=2

∫ θ̄c

0

P (Nrθ̄)P (Niθ̄)p(θ̄)dθ̄

+ 2

∫ θ̄tol

θ̄c

P (Nrθ̄)P (Niθ̄)p(θ̄)dθ̄ (22)

Using a linear approximation to the productP (Nrθ̄)P (Niθ̄)
in the second integral and treating the product as a constantin
the first integral, for type II symbols we get,

P (E1) = 2

∫ θ̄c

0

K0p(θ̄)dθ̄ + 2

∫ θ̄tol2

θ̄c

[

K0 + K2−K0

θ̄tol2
θ̄
]

p(θ̄)dθ̄

(23)

= 2K0

[

1 −Q
(

θ̄tol2

σθ̄

)]

+ 2σθ̄(K2−K0)√
2π(θ̄tol2−θ̄c)

[

e−
θ̄2

c

2 − e−
θ̄2

tol2

2

]

(24)

where θ̄tol2 denotes the CPE tolerance of type II symbols.
θ̄tol1 is defined similarly. For type I symbols, a very similar
expression can be computed by replacingθ̄tol2 with θ̄tol1 and
K2 with K1. Taking the average of the two expressions, one
gets

P (E1)=K0

[

2 −Q
(

θ̄tol1

σθ̄

)

− Q
(

θ̄tol2

σθ̄

)]

+

∑

j={1,2}

σθ̄(Kj−K0)√
2π(θ̄tolj−θ̄c)

[

e−
θ̄2

c

2 − e−
θ̄2

tolj

2

]

. (25)

For scenarios where|h| ≤ 3σ, we do not split the integral and
use a simple linear approximation over the whole interval. This
gives us,

[P (E1)]j = 2K0

[

1 −Q
(

θ̄tolj

σθ̄

)]

+
2σθ̄(Kj−K0)√

2πθ̄tolj

[

1 − e−
θ̄2

tolj

2

]

(26)

wherej ∈ {1, 2}, depending on type I or type II symbol. The
average,([P (E1)]1 + [P (E1)]2)/2 is the required probability.

Thus, depending on the channel parameter corresponding
to the subcarrier, we use either (25) or (26) to compute the
probability of a correct decision being made.

IV. SIMULATION RESULTS

To test the performance of the algorithm, we simulated a link
using 64-QAM constellation and OFDM with 64 sub-carriers
over a frequency selective channel. The channel was assumed
to be a Rayleigh multipath fading channel with 10 taps and an
exponential power delay profile. The sub-carrier spacing was set
to 300 kHz. The oscillator bandwidth was set to 10 KHz and
the standard deviationσθ was set to 3◦. The MATLAB code
presented in [1] was used to generate the PHN sequences.

The proposed algorithm proposed was tested along
with decision-directed ML/MAP (DD-ML/DD-MAP) CPE
estimation-compensation algorithms that first detect symbols



18 20 22 24 26 28 30 32 34 36
10

−4

10
−3

10
−2

10
−1

Eb/No (in dB)

B
E

R

 

 

no CPE estimation
DD−ML estimation
DD−MAP estimation
Proposed CPE estimation
Perfect CPE estimation

Fig. 3. BER plots for different CPE estimation schemes.

ignoring the effects of phase noise, assume no uncertainty in the
symbol decisions and use them to estimate CPE. The parameter
l0 in Section III-B was set to 8 as it was found from previous
simulations that a pilot driven CPE estimation with at least8
pilots gives a good estimate of the CPE. As seen in Figure 3,
while the ML and MAP estimation-compensation schemes per-
form almost identically, the new scheme performs much better.
In fact, the curve for the proposed method is indistinguishable
from the one where genie-aided CPE compensation is used.
Note that there is still ICI due to the time-varying part of PHN.

In addition to the above simulations, the new scheme was
also tested in a coded system. Since the SNRs of interest are
much lower for a coded system it is important to test the
performance of the algorithm at these SNRs, especially because
the assumption in (III-C) that the magnitude of the decoded
symbol and the transmitted symbol are the same need not hold
at lower SNRs. Secondly, because the code is, in general, able
to correct errors due to additive noise or ICI that are random
in nature, frame errors are likely to arise only when the CPE
estimation is not perfect and has resulted in an error burst and
this gives us a better picture of the effectiveness of the proposed
algorithm.

In these simulations, we used an LDPC code of rate 3/4
and length 2304, taken from the WiMAX standard. On the
transmit side, the message bits were encoded, interleaved and
mapped to symbols from the 64-QAM constellation. The length
of the outer code was chosen so as to span 6 OFDM symbols.
On the receiver side, after the reception of the 6 OFDM
symbols, each was compensated for CPE and soft information
was passed to the LDPC decoder. The LDPC decoder was
run for 18 iterations. Figure 4 clearly shows the premature
error floor resulting because of imperfect CPE estimation inthe
DD-ML/MAP schemes. It is seen that by using the algorithm
proposed here, the error floor is no longer seen.

V. CONCLUSION

In this paper we highlighted the consequences of high CPE
and its detrimental effect on blind decision-directed algorithms.
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Fig. 4. BER plot of coded-OFDM with different CPE compensation schemes.

To overcome this effect, we developed a new algorithm to
estimate CPE that takes into account the reliability of symbol
detection in each sub-carrier. Through simulations we have
established the performance gains that can be achieved using
the new scheme.
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