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Abstract—This paper investigates the symmetric degrees of
freedom (DoF) of multiple-input multiple-output (MIMO) ce llular
networks with G cells and K users per cell, havingN antennas
at each base station (BS) andM antennas at each user. In
particular, we investigate achievability techniques based on either
decomposition with asymptotic interference alignment or linear
beamforming schemes, and show that there are distinct regimes
of (G,K,M,N) where one outperforms the other. We first note
that both one-sided and two-sided decomposition with asymptotic
interference alignment achieve the same degrees of freedom. We
then establish a set of conditions under which the DoF achieved
using decomposition based schemes is optimal by deriving a set
of outer bounds on the symmetric DoF based on existing outer
bounds for MIMO X-networks. Using these results we completely
characterize the optimal DoF of any G-cell network with each
user having a single antenna. For linear beamforming schemes, we
first focus on small networks and propose a structured approach
to linear beamforming based on a notion called packing ratios.
The notion of packing ratio describes the interference footprint or
shadow cast by a set of transmit beamformers and enables us to
identify the underlying structures for aligning interfere nce. Such a
structured beamforming design can be shown to achieve the optimal
spatially normalized DoF (sDoF) of two-cell two-user/cellnetwork
and the two-cell three-user/cell network. For larger networks, we
develop an unstructured approach to linear interference alignment,
where transmit beamformers are designed to satisfy conditions for
interference alignment without explicitly identifying th e underlying
structures for interference alignment. The main numerical insight
of this paper is that such an approach appears to be capable of
achieving the optimal sDoF for MIMO cellular networks in regimes
where linear beamforming dominates asymptotic decomposition,
and a significant portion of sDoF elsewhere. Remarkably, polyno-
mial identity test appears to play a key role in demarcating the
boundary of the achievable sDoF region in the former case.

I. I NTRODUCTION

Cellular networks are fundamentally limited by inter-cell
interference. Transmit optimization in time, frequency orspatial
domains have all been frequently used to manage interference.
In this context, degrees of freedom (DoF) has emerged as a
useful yet tractable metric in quantifying the extent to which
interference can be mitigated through transmit optimization in
time/frequency/spatial domains. In this work we study the DoF
of multiple-input multiple-output (MIMO) cellular networks
with G cells andK users/cell havingN antennas at each base
station (BS) andM antennas at each user—denoted in this paper
as a(G,K,M,N) network.

The study of DoF started with the work on the two-user
MIMO interference channel [1]. In [2], [3], the authors in-
vestigate the DoF of the2 × 2 X network for which linear
beamformingbased interference alignment was used to establish

the optimal DoF. This was followed by the landmark paper of
[4], where it was shown that theK-user single-input single-
output (SISO) interference channel hasK/2 DoF. The crucial
contribution of [4] is anasymptotic schemefor interference
alignment over multiple symbol extensions in time or frequency
for establishing the optimal DoF. This scheme requires channels
to be time/frequency varying and crucially relies on the com-
mutativity of diagonal channel matrices obtained from symbol
extensions in time or frequency. The asymptotic scheme has
been extended to MIMO cellular networks [5] and MIMOX
networks [6]. We note that instead of relying on infinite symbol
extensions over time or frequency varying channels, a signal
space alignment scheme based on rational dimensions developed
in [7] achieves the same DoF using the scheme in [4], but over
constant channels.

Since these early results, both, the asymptotic schemes of [4],
[7] and the linear beamforming schemes have emerged as the
leading techniques to establish the optimal DoF of various net-
works. Of particular note is the fact that so far, techniquessuch
as dirty paper coding and successive interference cancellation
have not been necessary to establish results on DoF.

In this work, we study the DoF achieved using the asymptotic
schemes of [4], [7] and the linear beamforming schemes along
with conditions for their optimality in the context of MIMO
cellular networks. Optimizing either scheme to general MIMO
cellular networks is not straightforward. While the asymptotic
schemes require the multi-antenna nodes in a MIMO network
to be decomposed into independent single-antenna nodes, linear
beamforming schemes require significant customization foreach
MIMO cellular network. This paper is motivated by the work of
[8], which shows that for theK-user MIMO interference channel
the two techniques have distinct regimes where one outperforms
the other and that both play a critical role in establishing the
optimal DoF. We observe that the same insight also applies
to MIMO cellular networks, but the characterization of the
optimal DoF is more complicated because of the presence of
multiple users per cell. This paper makes progress on this front
by studying the optimality of decomposition based schemes
for a general(G,K,M,N) network, and by developing two
contrasting approaches to linear beamforming that emerge from
two different perspectives on interference alignment and that are
DoF optimal for certain networks.

A. Literature Review

In the following, we first review the existing results based
on decomposition and linear beamforming, then describe our



contributions towards establishing the optimal DoF of MIMO
cellular networks.

1) Decomposition Based Schemes

The asymptotic scheme developed in [4] for the SISOK-user
interference channel can be extended to other MIMO networks,
including theX network [6], [9], and cellular networks [5],
[10] having the same number of antennas at each node. Since
the original scheme in [4] relies on commutativity of channel
matrices, applying this scheme to MIMO networks requires
decomposing multi-antenna nodes into multiple single-antenna
nodes. Two-sided decomposition involves decomposing both
transmitters and receivers into single-antenna nodes, while one-
sided decomposition involves decomposing either the transmit-
ters or the receivers. Once a network has been decomposed, the
scheme in [4] can be applied to get an inner bound on the DoF
of the original network.

Two-sided decomposition was first used to prove that the
K-user interference channel withM antennas at each node
hasKM/2 DoF [4]. This shows that the network is two-side
decomposable, i.e., no DoF are lost by decomposing multi-
antenna nodes into single antenna nodes. Two-sided decom-
position is also known to achieve the optimal DoF of MIMO
cellular networks with same number of antennas at each node
[5]. In particular, it is shown that a(G,K,N,N) network
hasKN/(K + 1) DoF/cell. However, forA × B X networks
with A transmitters andB receivers havingN antennas at
each node, two-sided decomposition is shown to be suboptimal
and that one-sided decomposition achieves the optimal DoF
of ABN/(A + B − 1) [9]. In [11], [12], the DoF of theK-
user interference channel withM antennas at the transmitters
and N antennas at the receivers is studied and the optimal
DoF is established for someM and N (e.g., whenM and
N are such thatmax(M,N)

min(M,N) is an integer) using the rational
dimensions framework developed in [7]. In [8], it is shown that
decomposition based schemes achieve the optimal DoF of the
K-user interference channel wheneverK−2

K2−3K+1 ≤ M
N

≤ 1 for
K ≥ 4.

2) Linear Beamforming

Linear beamforming techniques that do not require decomposi-
tion of multi-antenna nodes play a crucial role in establishing
the optimal DoF of MIMO networks with different number
of antennas at the transmitters and receivers. In particular, the
work of Wang et al. [13] highlights the importance of linear
beamforming techniques in achieving the optimal DoF of the
MIMO three-user interference channel. In [13], the achievability
of the optimal DoF is established through a linear beamforming
technique based on a notion called subspace alignment chains.
A more detailed characterization of the DoF of the MIMO
K-user interference channel is provided in [8] where antenna
configuration (values ofM andN ) is shown to play an important
role in determining whether the asymptotic schemes or linear
beamforming schemes achieve the optimal DoF.

Studying the design and feasibility of linear beamforming for
interference alignment without symbol extensions has received

significant attention [14]–[19]. Designing transmit and receive
beamformers for linear interference alignment is equivalent to
solving a system of bilinear equations and a widely used neces-
sary condition to check for the feasibility of linear interference
alignment is to verify if the total number of variables exceeds
the total number of constraints in the system of equations. If
a system has more number of variables than constraints then it
is called a proper system, otherwise it is called an improper
system [14]. In particular, whend DoF/user are desired in
a (G,K,M,N) network, the system is said to be proper if
M +N ≥ (GK +1)d and improper otherwise [19]. While it is
known that almost all improper systems are infeasible [15],[16],
feasibility of proper systems is still an area of active research.
In [15]–[17] a set of sufficient conditions for feasibility are
established, while numerical tests to check for feasibility are
provided in [18].

While the optimality of linear beamforming for theK-user
MIMO interference channel has been well studied, the role of
linear beamforming in MIMO cellular networks having different
number of antennas at the transmitters and receivers has not
received significant attention. Partial characterizationof the
optimal DoF achieved using linear beamforming for two-cell
networks are available in [20]–[23], while [24] establishes a set
of outer bounds on the DoF for the general(G,K,M,N) net-
work. Linear beamforming techniques to satisfy the conditions
for interference alignment without symbol extensions are also
presented in [23]–[26].

Characterizing linear beamforming strategies that achieve the
optimal DoF for larger networks is challenging primarily be-
cause multiple subspaces can interact and overlap in complicated
ways. Thus far in the literature, identifying the underlying
structure of interference alignment for each given network(e.g.
subspace alignment chains for the three-user MIMO interference
channel) has been a prerequisite for (a) developing counting
arguments that expose the limitations of linear beamforming
strategies and (b) developing DoF optimal linear beamforming
strategies. For the MIMO cellular network, significant recent
progress has been made in [27], where a genie chain structure
has been identified, and the optimality of linear beamforming
has been established for certain regimes. In contrast to [27], the
current paper on the one hand establishes a simpler structure
called packing ratios for smaller networks, yet on the other
hand, through numerical observation, establishes that even an
unstructured approach can achieve the optimal DoF for a wide
range of MIMO cellular networks, thus signficantly alleviating
the challenge in identifying structures in DoF-optimal beam-
former design for larger networks.

B. Main Contributions

This paper aims to understand the DoF of MIMO cellular
networks using both decomposition based schemes and linear
beamforming. On the use of decomposition, we first note that
both, the asymptotic scheme of [11] for the MIMO interfer-
ence channel and the asymptotic scheme of [6] for the X-
network can be applied to MIMO cellular networks. Extending
the scheme in [11] to MIMO cellular networks requires one-
sided decomposition on the user side (multi-antenna users are
decomposed to multiple single antenna users), while extending



the scheme in [6] requires two-sided decomposition. More im-
portantly, both approaches achieve the same degrees of freedom.
In this paper, we develop a set of outer bounds on the DoF
of MIMO cellular networks and use these bounds to establish
conditions under which decomposition based approaches are
optimal. The outer bounds that we develop are based on an
outer bound for MIMO X-networks established in [6]. In
particular we establish that for any(G,K,M,N) network,
max

(

M
Kη+1 ,

Nη
Kη+1

)

is an outer bound on the DoF/user, where

η ∈
{

p
q
: p ∈ {1, 2, . . . , G− 1}, q ∈ {1, 2, . . . , (G− p)K}

}

.

In order to study linear beamforming strategies for MIMO
cellular networks, similar in spirit to [13], we allow for spa-
tial extensions of a given network and study the spatially-
normalized DoF (sDoF). Spatial extensions are analogous to
time/frequency extensions where spatial dimensions are added
to the system through addition of antennas at the transmitters
and receivers. Unlike time or frequency extensions where the
resulting channels are block diagonal, spatial extensionsassume
generic channels with no additional structure—making them
significantly easier to study without the peculiarities associated
with additional structure. Using the notion of sDoF, we first
develop a structured approach to linear beamforming that is
particularly useful in two-cell MIMO cellular networks. Wethen
focus on an unstructured approach to linear beamforming that
can be applied to a broad class of MIMO cellular networks.

Structured approach to linear beamforming: This paper
develops linear beamforming strategies that achieve the optimal
sDoF of two-cell MIMO cellular networks with two or three
users per cell. We characterize the optimal sDoF/user for all
values of M and N and show that the optimal sDoF is a
piecewise-linear function, with eitherM or N being the bottle-
neck. We introduce the notion ofpacking ratio that describes
the interference footprint or shadow cast by a set of uplink
transmit beamformers and exposes the underlying structure
of interference alignment. Specifically, the packing ratioof a
given set of beamformers is the ratio between the number of
beamformers in the set and the number of dimensions these
beamformers occupy at an interfering base-station (BS).

Packing ratios are useful in determining the extent to which
interference can be aligned at an interfering BS. For example,
for the two-cell, three-user/cell MIMO cellular network, when
M/N ≤ 2/3, the best possible packing ratio is2 : 1, i.e., a set
of two beamformers corresponding to two users aligns onto a
single dimension at the interfering BS. This suggests that if we
had sufficiently many such sets of beamformers, no more than
2N/3 DoF/cell are possible. This in fact turns out to be a tight
upper bound whenever59 ≤ M

N
≤ 2

3 . Through the notion of
packing ratios, it is easier to visualize the achievabilityof the
optimal sDoF using linear beamforming and the exact cause for
the alternating behavior of the optimal sDoF where eitherM or
N is the bottleneck becomes apparent. In particular, we establish
the sDoF of two-cell networks with two or three users/cell.

Unstructured approach to linear beamforming:In order to
circumvent the bottleneck of identifying the underlying structure
of interference alignment and to establish results for a broad set
of networks, this paper proposes a structure agnostic approach
to designing linear beamformers for interference alignment. In

such an approach, depending on the DoF demand placed on a
given MIMO cellular network, we first identify the total number
of dimensions that are available for interference at each BS. We
then design transmit beamformers in the uplink by first con-
structing a requisite number of random linear vector equations
that the interfering data streams at each BS are required to satisfy
so as to not exceed the limit on the total number of dimensions
occupied by interference. We then proceed to solve this set of
linear equations to obtain a set of aligned transmit beamformers.

The crucial element in such an approach is the fact that we
construct linear vector equations with random coefficients. This
is a significant departure from typical approaches to construct
aligned beamformers where the linear equations that identify
the alignment conditions emerge from notions such as subspace
alignment chains or packing ratios and are predefined with
deterministic coefficients. The flexibility to choose random coef-
ficients allows us to use this technique for interference alignment
in networks of any size, without having to explicitly infer the
underlying structure.

While such an approach is also discussed in [28] and [25],
several issues remain, including the necessity for a polynomial
identity test. In our work we outline the key steps to designing
aligned transmit beamformers using this approach and take a
closer look at the DoFs that can be achieved using such an
approach. We then proceed to numerically examine the opti-
mality of the DoF achieved through such a scheme. Numerical
evidence suggests that for any given(G,K,M,N) network, the
unstructured approach to linear beamforming achieves the opti-
mal sDoF wheneverM andN are such that the decomposition
inner bound

(

MN
KM+N

)

lies below the proper-improper boundary
(

M+N
GK+1

)

. Remarkably, the polynomial identity test plays a key
role in identifying the optimal sDoF in this regime.

C. Paper Organization

The presentation in this paper is categorized into two main
parts. The first part, presented in Section III, discusses the
achievable DoF using decomposition based approaches and
establishes outer bounds on the DoF of MIMO cellular networks
that identify the conditions under which such an approach is
DoF optimal. In the second part, we present a structured and an
unstructured approach to linear beamforming design for MIMO
cellular networks. In particular, in Section IV-A, we establish
the optimal sDoF of the two-cell MIMO network with two or
three users per cell through a linear beamforming strategy based
on packing ratios. Section IV-C introduces the unstructured
approach to interference alignment and explores the scope and
limitations of such a technique in achieving the optimal sDoF
of any (G,K,M,N) network.

D. Notation

We represent all column vectors in bold lower-case letters and
all matrices in bold upper-case letters. The conjugate transpose
and Euclidean norm of vectorv are denoted asvH and ‖v‖,
respectively. Calligraphic letters (e.g.,Q) are used to denote sets.
The column span of the columns of a matrixM is denoted as
span(M).



II. SYSTEM MODEL

Consider a network withG interfering cells withK users in
each cell, as shown in Fig. 1. Each user is assumed to have
M antennas and each BS is assumed to haveN antennas. The
index pair(j, l) is used to denote thelth user in thejth cell. The
channel from user(j, l) to theith BS is denoted as theN ×M
matrix H(jl,i). We assume all channels to be generic and time
varying. In the uplink, user(j, l) is assumed to transmit the
M ×1 signal vectorxjl(t) in time slott. The transmitted signal
satisfies the average power constraint,1

T

∑T
t=1 ‖xij(t)‖2 ≤ ρ.

The resulting received signal at theith BS can be written as

yi =

G
∑

j=1

K
∑

l=1

H(jl,i)xjl + ni, (1)

where yi is an N × 1 vector andni is the N × 1 vector
representing circular symmetric additive white Gaussian noise
∼ CN (0, I). The received signal is defined similarly for the
downlink.

Suppose the transmit signal vector is formed through aM×d
linear transmit beamforming matrixVjl and received using a
N × d receive beamforming matrixUjl, whered represents the
number of transmitted data streams per user, then the received
signal can be written as

yi =

G
∑

j=1

K
∑

l=1

H(jl,i)Vjlsjl + ni, (2)

wheresj is thed× 1 symbol vector transmitted by user(j, l).
We denote the space occupied by interference at theith BS
as the column span of a matrixRi formed using the column
vectors from the set{H(jl,i)vjlk : j ∈ {1, 2, . . . , G}, l ∈
{1, 2, . . . ,K}, k ∈ {1, 2, . . . , d}, j 6= i}, where we use the
notationvjlk to denote thekth beamformer associated with user
(j, l).

To recover the signals transmitted by user(i, l), the signal
received by theith BS is processed using the receive beamformer
Uil and the received signal after this step can be written as

UH
il yi =

G
∑

j=1

K
∑

l=1

UH
il H(jl,i)Vjlsjl +UH

il ni. (3)

The information theoretic quantity of interest is the degrees of
freedom. In particular, the total degrees of freedom of a network
is defined as

lim sup
ρ→∞

[

sup
{Rij(ρ)}∈C(ρ)

(

R11(ρ) +R12(ρ) + . . .+RGK(ρ)
)

log(ρ)

]

where ρ is the signal-to-noise (SNR) ratio,{Rij(ρ)} is an
achievable rate tuple for a given SNR whereRij denotes the rate
to user(i, j), andC(ρ) is the capacity region for a given SNR.
As is evident, the sum-DoF of a network is the pre-log factor
at which sum-capacity scales as transmit power is increased
to infinity. Informally, it is the total number of interference
free directions that can be created in a network. Due to the
symmetry in the network under consideration, maximizing the
sum-DoF is equivalent to maximizing the DoF/user or DoF/cell.
The maximum DoF/user that can be achieved in a network is

Fig. 1: Figure representing a cellular network having threemutually
interfering cells with four users per cell.

also referred to as the symmetric DoF of a network. This paper
focuses on characterizing the optimal symmetric DoF of MIMO
cellular networks.

III. D ECOMPOSITIONBASED SCHEMES: ACHIEVABLE DOF
AND CONDITIONS FOROPTIMALITY

In this section we discuss the DoF/user that can be achieved
in a MIMO cellular network using the asymptotic scheme
presented in [4] and establish the conditions under which such
an approach is DoF optimal.

A. Achievable DoF using decomposition based schemes

Applying the asymptotic scheme in [4] to a MIMO network
requires us to decompose either the transmitters or the receivers,
or both, into independent single-antenna nodes. When using
the asymptotic scheme on the decomposed network, the DoF
achieved per user in the original network is simply the sum of
the DoFs achieved over the individual single-antenna nodes.

One-sided decomposition of a(G,K,M,N) cellular network
on the user side reduces the network to aG-cell cellular
network withKM single antenna users per cell. Since user-side
decomposition of both, the MIMO interference channel and the
MIMO cellular network, result in a MISO cellular network, the
results of [11], [12] naturally extend to MIMO cellular networks.
Two-sided decomposition of a(G,K,M,N) cellular network
results inGN single-antenna BSs andKM single-antenna users,
which form aGN ×GKM X-network with a slightly different
message requirement than in a traditionalX-network since each
single-antenna user is interested in a message from onlyN of
theGN single-antenna BSs. The asymptotic alignment scheme
developed in [6] forX-networks can also be applied to this
GN × GKM X-network. Using the results in [6], [11], [12],
the achievable DoF for general MIMO cellular networks using
decomposition based schemes is stated in the following theorem.

Theorem 3.1 For the (G,K,M,N) cellular network, using
one-sided decomposition on the user side or two-sided decompo-
sition, KMN

KM+N
DoF/cell are achievable when(G−1)KM ≥ N .

This theorem generalizes the result established in [5] for SISO
cellular networks to MIMO cellular networks. By duality of
linear interference alignment, this result applies to bothuplink
and downlink. When(G − 1)K < N , there is no scope for
interference alignment and random transmit beamforming in
the uplink turns out to be the DoF optimal strategy. Note
that while we considered decomposing multi-antenna users
into single-antenna users for one-sided decomposition, wecan
alternately also consider decomposing the multi-antenna BSs.



It can however be shown that the achievable DoF remains
unchanged. Designing the achievable scheme is similar to [9],
where separation between signal and interference is no longer
implicitly assured.

B. Outer Bounds on the DoF of MIMO Cellular Networks

We derive a new set of outer bounds on the DoF of MIMO
cellular networks that are based on a result in [6], where MIMO
X-networks withA transmitters andB receivers are considered.
By focusing on the set of messages originating from or intended
for a transmitter-receiver pair and splitting the total messages in
the network intoAB sets, the authors in [6] derive a bound on
the DoF of this set of messages. Lettingdi,j represent the DoF
between theith transmitter and thejth receiver, the following
lemma presents the outer bound obtained in this manner.

Lemma 3.1 ( [6] ) In a wirelessX-network withA transmitters
andB receivers, the DoF of all messages originating at theath
transmitter and the DoF of all the messages intended for thebth
receiver are bounded by

B
∑

i=1

da,i +

A
∑

j=1

dj,b − da,b ≤ max(M,N), (4)

whereM is the number of antennas at theath transmitter and
N is the number of antennas at thebth receiver. By symmetry,
this bound also holds when the direction of communication is
reversed.

Before we proceed to establish outer bounds on the DoF of
a MIMO cellular network, we define the setQ as

Q =

{

p

q
: p ∈ {1, 2, . . . , G− 1}, q ∈ {1, 2, . . . , (G− p)K}

}

.

(5)
The following theorem presents an outer bound on the DoF.

Theorem 3.2 If a (G,K,M,N) network satisfiesM/N ≤ p/q,
for somep/q ∈ Q, thenNp/(Kp + q) is an outer bound on
the DoF/user of that network. Further, ifM/N ≥ p/q, for some
p/q ∈ Q, thenMq/(Kp+q) is an outer bound on the DoF/user
of that network.

Proof: To prove this theorem, we first note that a cellular
network can be regarded as anX-network with some messages
set to zero. Further, Lemma 3.1 is applicable even when some
messages are set to zero. Now, supposeM

N
≤ p

q
for some

p
q
∈ Q, then consider a set ofp cells and allow the set of BSs in

thesep cells to cooperate fully. LetB denote the set of indices
corresponding to thep chosen cells. From the remainingG− p
cells, we pickq users and denote the set of indices corresponding
to these users asUB̄ and allow them to cooperate fully.

Applying Lemma 3.1 to the set of BSsB and the set of users
UB̄, we get

∑

i∈B

K
∑

j=1

dij,i +
∑

(g,h)∈UB̄

dgh,g ≤ max(pN, qM). (6)

By summing over similar bounds for all the
(

G
p

)

sets ofp BSs

and the corresponding
(

(G−p)K
q

)

sets ofq users for each set of
p BSs, we obtain

[

K

q
+

1

p

] G
∑

i=1

K
∑

j=1

dij,i ≤
GK

pq
max(pN, qM)

⇒
G
∑

i=1

K
∑

j=1

dij,i ≤
GK

Kp+ q
max(pN, qM) = pN. (7)

Thus, the total DoF in the network is bounded byGKNp
Kp+q

.

Hence, DoF/user≤ Np
Kp+q

wheneverp/q ∈ Q. The outer bound
is established in a similar manner whenM

N
≥ p

q
. Note that

wheneverM
N

= p
q
, Np
Kp+q

= Mq
Kp+q

= MN
KM+N

.

In [24], outer bounds on the DoF for MIMO cellular network
are derived which are also based on the idea of creating multiple
message sets [6]. The DoF/user of a(G,K,M,N) network is
shown to be bounded by

DoF/user≤ min
(

M, N
K
, max[KM,(G−1)N ]

K+G−1 , max[N,(G−1)M ]
K+G−1

)

.

(8)

While it is difficult to compare this set of bounds and the bounds
in Theorem 3.2 over all parameter values, we can show that
under certain settings the bounds obtained in Theorem 3.2 are
tighter. For example, sincep/q ∈ Q, let us fix p/q = 1/K,
and then setM/N = p/q = 1/K. Further, let us assume that
(G− 1) < K. Under such conditions, (8) bounds the DoF/user
by MK

K+G−1 while Theorem 3.2 states that DoF/user≤ M
2 . Since

we have assumedK > G − 1, it is easy to see that the latter
bound is tighter.

C. Optimality of the DoF Achieved Using Decomposition

Using the results in sections III-A and III-B, we establish
conditions for the optimality of one-sided and two-sided decom-
position of MIMO cellular networks in the following theorem.

Theorem 3.3 The optimal DoF for any(G,K,M,N) network
with M

N
∈ Q is MN

KM+N
DoF/user. The optimal DoF is achieved

by either one-sided or two-sided decomposition with asymptotic
interference alignment.

This result follows immediately from Theorems 3.1 and 3.2.
We observe that this result is analogous to the results in [11],
[12] where it is shown that theG-user interference channel has
MN
M+N

DoF/user wheneverη = max(M,N)
min(M,N) is an integer andG >

η. It is easy to see that the results of [11], [12] can be easily
recovered from the above theorem by settingK = 1 and letting
G represent the number of users in the interference channel.

The result in Theorem 3.3 has important consequences for
cellular networks with single-antenna users. The following
corollary describes the optimal DoF/user of any cellular network
with single antenna users that satisfies(G− 1)K ≥ N .

Corollary 3.1 The optimal DoF of a(G,K,M = 1, N) net-
work with (G− 1)K ≥ N , is N

K+N
DoF/user.

For example, this corollary states that a three-cell network
having four single-antenna users per cell and four antennasat
each BS has1/2 DoF/user. Using this corollary and the DoF
achieved using zero-forcing beamforming, the optimal DoF of



cellular networks with single-antenna users can be completely
characterized and is stated in the following theorem.

Theorem 3.4 The DoF of a G-cell cellular network withK
single-antenna users per cell andN antennas at each BS is
given by

DoF/user=











N
N+K

N < (G− 1)K
N
GK

(G− 1)K ≤ N < GK

1 N ≥ GK

. (9)

The optimal DoF are achieved through zero-forcing beamform-
ing whenN ≥ (G − 1)K and through asymptotic interference
alignment whenN < (G− 1)K.

Another interesting consequence of Theorem 3.3 for two-cell
cellular networks is stated in the following corollary.

Corollary 3.2 For a (G = 2,K,M,N) cellular network with
K = N

M
, time sharing across cells is optimal and the optimal

DoF/user is N
2K .

Proof: Using Theorem 3.3, the optimal DoF/user of this network
is N

2K . Since theK-user MAC/BC with M
N

= 1
K

has N
K

DoF/user, accounting for time sharing between the two cells
gives us the required result.

This result recovers and generalizes a similar result obtained
in [20] for two-cell MISO cellular networks. This shows thatin
dense cellular networks whereK = N/M , when two closely
located cells cause significant interference to each other,then
simply time sharing between the two mutually interfering BSs
is a DoF-optimal way to manage interference in the network.

This result can be further extended to the 2-D Wyner model
for MIMO cellular networks and is stated in the following
corollary.

Corollary 3.3 Consider a two-dimensional square grid of BSs
with K users/cell,M antennas/user, andN antennas/BS, such
that each BS interferes with the four neighboring BSs as shown
in Fig. 2. WhenKM = N , time sharing between adjacent cells
so as to completely avoid interference is a DoF optimal strategy
and achievesN/2K DoF/user.

D. Insights on the Optimal DoF of MIMO Cellular Networks

When the achievable DoF using decomposition, the outer
bounds on the DoF, and the proper-improper boundary are
viewed together, an insightful (albeit incomplete) picture of
the optimal DoF of MIMO cellular networks emerges. Fig.
3 plots the normalized DoF/user (DoF/user/N) achieved by
the decomposition based approach as a function of the ratio
M/N (γ) along with the outer bounds derived in Theorem
3.2 for a set of two-cell networks with different number
of users/cell. We also plot the proper-improper boundary
(M + N ≶ (GK + 1)d) that acts as an upper bound on the
DoF that can be achieved using linear beamforming (improper
systems are almost surely infeasible). Although Fig. 3 considers
a set of two-cell networks, several important insights on general
MIMO cellular networks can be inferred and are listed below.

Fig. 2: Figure showing the 2-D Wyner model of a cellular network.
Two cells are connected to each other if they mutually interfere. Cells
that are not directly connected to each other are assumed to see no
interference from each other. Note that each user in a given cell sees
interference from the four adjacent BSs.

(a) Two distinct regimes:Depending on the network parameters
G, K, M andN , there are two distinct regimes where decom-
position based schemes outperform linear beamforming and vice
versa.
(b) Optimality of decomposition based schemes for large net-
works:For large networks, the decomposition based approach is
capable of achieving higher DoF than linear beamforming and
the range ofγ over which the decomposition based approach
dominates over linear beamforming increases with network
size. The outer bounds on the DoF suggest that when the
decomposition based inner bound lies above the proper-improper
boundary, the inner bound could well be optimal. Fig. 3(e) is
particularly illustrative of this observation.
(c) Importance of linear beamforming for small networks:For
small networks ( e.g. two-cell, two-users/cell; two-cell,three-
users/cell), the decomposition based inner bound lies below
the proper-improper boundary, suggesting that linear beamform-
ing schemes can outperform decomposition based schemes. In
Section IV-A, we study the DoF of the two smallest cellular
networks and design a linear beamforming strategy that achieves
the optimal DoF of these two networks. In Section IV-C a
general technique to design linear beamformers for any cellular
network is presented.
(d) Inadequacy of existing outer bounds:The outer bounds
listed in Theorem 3.2 are not exhaustive, i.e., in some cases,
tighter bounds are necessary to establish the optimal DoF. This
observation is drawn from Fig. 3(b), where it is seen that some
part of the outer bound lies above both the proper-improper
boundary and the decomposition based inner bound suggesting
that tighter outer bounds may be possible. In Section IV-A, we
indeed derive a tighter outer bound for specific two-cell three-
users/cell networks.

Motivated by the above observations, we now turn to linear
beamforming schemes for MIMO cellular networks in the next
section.
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Fig. 3: The proper-improper boundary (red), decompositioninner bound (blue), and the DoF outer bounds (green) for a setof two-cell networks
with different number of users per cell. Note the increasingdominance of the decomposition based inner bound as the network size increases.

IV. L INEAR BEAMFORMING: STRUCTURED AND

UNSTRUCTUREDDESIGN

Consider a(G,K,M,N) network with the goal of serving
each user withd data streams to each user. Using (3), when
no symbol extensions are allowed, the linear beamformersVij

andUij need to satisfy the following two conditions for linear
interference alignment [14]:

UH
ijHlm,iVlm = 0 ∀ (i, j) 6= (l,m) (10)

rank(UH
ijHij,iVij) = d ∀ (i, j). (11)

For a given system, it is not always possible to satisfy the
conditions in (10) and (11) and a preliminary check on feasibility
is to make sure that the given system is proper [14], [19]. As
mentioned earlier, a(G,K,M,N) network with d DoF/user is
said to be proper ifM+N ≥ (GK+1)d and improper otherwise
[19]. While not all proper systems are feasible, improper systems
have been shown to be almost surely infeasible [15], [16].
For proper-feasible systems, solving the system of bilinear
equations (10) typically requires the use of iterative algorithms
such as those developed in [29]–[32]. In certain cases where
maxM,N ≥ GKd it is possible to solve the system of bilinear
equations by randomly choosing either the receive beamformers
{Uij} or the transmit beamformers{Vij} and then solving the
resulting linear system of equations.

Assuming the channels to be generic allows us to restate the
conditions in (10) and (11) in a manner that is more useful
in developing DoF optimal linear beamforming schemes. Since
direct channels do not play a role in (10), the condition in (11)
is automatically satisfied wheneverUij and Vij have rankd

and whenever the channels are generic [14]. As a further conse-
quence of channels being generic, satisfying (10) is equivalent to
the condition that the set of uplink transmit beamformers{Vij}
is such that there are at leastd interference-free dimensions at
each receiver before any linear processing. In essence, generic
channels ensure that at each BS, the intersection between use-
ful signal subspace (span([Hi1,iVi1,Hi2,iVi2, . . . ,HiK,iViK ])
and interference subspace (span(Ri)) is almost surely zero
dimensional, provided that the rank(Ri) ≤ (N −Kd) ∀i. Thus
the requirements for interference alignment can be alternately
stated as

rank(Ri) ≤ N −Kd ∀ i, (12)

rank(Vjl) = d ∀ j, l. (13)

The rank constraint in (12) essentially requires the(G− 1)Kd
column vectors ofRi to satisfyL = GKd −N distinct linear
vector equations. Given a set of transmit precoders{Vjl} that
satisfy the above conditions, designing the receive filtersis then
straightforward.

This alternate perspective on interference alignment lends
itself to counting arguments that account for the number of
dimensions at each BS occupied by signal or interference. These
counting arguments in turn lead to the development of DoF-
optimal linear beamforming strategies such as the subspace
alignment chains for the 3-user interference channel [13].

In this section, we consider two contrasting approaches to
design DoF-optimal transmit beamformers that satisfy (12)and
(13). In Section IV-A, through a counting argument based on a
notion called packing ratios we we take a structured approach
to constructing theL distinct linear vector equations that need
to be satisfied by the uplink transmit beamformers at each BS.



Such an approach is DoF-optimal for small networks such as the
two-cell two-user/cell and the two-cell, three-user/cellnetworks
but is difficult to generalize to larger networks. To overcome this
shortcoming, we develop an unstructured approach to designing
linear beamformers by relying on random linear vector equations
to satisfy (12). This bypasses the need for counting arguments
and is applicable to a wide class of cellular networks. Details
on this unstructured approach are presented in Section IV-C.

A. Structured Approach to Linear Beamforming Design

In this section we consider two of simplest cellular net-
works, namely the two-cell two-user/cell and the two-cell,three-
user/cell networks, and establish a linear beamforming strategy
that achieves the optimal symmetric DoF. In particular, we
establish the spatially-normalized DoF of these two networks
for all values of the ratioγ = M/N .

We begin by first restating the definition of spatially-
normalized DoF as given in [13].

Definition 4.1 Denoting the DoF/user of a(G,K,M,N) cellu-
lar network as DoF(M,N), the spatially-normalized DoF/user
is defined as

sDoF(M,N) = max
q∈Z+

DoF(qM, qN)

q
. (14)

Analogous to frequency and time domain symbol extensions,
the definition above allows us to permit extensions in space,
i.e., adding antennas at the transmitters and receivers while
maintaining the ratioM/N to be a constant. Unlike time or
frequency extensions where the resulting channels are block
diagonal, spatial extensions assume generic channels withno
additional structure. The lack of any structure in the channel
obtained through space extensions makes it significantly easier
to analyze the network.

1) Main Results

We now present the main results concerning the sDoF of the
two cellular networks under consideration.

Let the functionf(ω,K)(·) be defined as

f(ω,K)(M,N) = max

(

Nω

Kω + 1
,

M

Kω + 1

)

, (15)

whereω ≥ 0 andK ∈ Z
+. Further, define the functionD(2,2)(·)

to be

D(2,2)(M,N) =min
(

N,KM, f( 1
2
,2)(M,N), f(1,2)(M,N)

)

,

(16)

and the functionD(2,3)(·) to be

D(2,3)(M,N) =min
(

N,KM, f( 1
3
,3)(M,N), f( 1

2
,3)(M,N),

f( 2
3
,3)(M,N), f(1,3)(M,N)

)

. (17)

The following theorem characterizes an outer bound on the
DoF/user of the two-cell two-user/cell network and the two-cell
three-user/cell network.

Theorem 4.1 The DoF/user of a two-cell, K-user/cell MIMO
cellular network withK ∈ {2, 3}, havingM antennas per user

and N antennas per BS is bounded above byD(2,K)(M,N),
i.e.,

DoF/user≤ D(2,K)(M,N). (18)

Note that since this outer bound is linear in eitherM or N ,
this bound is invariant to spatial normalization and hence is
also a bound on sDoF and not just DoF. The outer bounds for
the two-cell, two-user/cell case follows directly from either the
bounds established in Section III-B (for1/4 ≤ γ ≤ 3/2) or
through DoF bounds on the multiple-access/broadcast channel
(MAC/BC) obtained by letting the two cells cooperate (forγ ≤
1/4) andγ ≥ 3/2). In the case of the two-cell, three-user/cell
network, the bounds whenγ ≤ 1/6 or γ ≥ 4/3 follow from
DoF bounds on the MAC/BC obtained by letting the two cells
cooperate, while the bounds when1/6 ≤ γ ≤ 5/9 and 3/4 ≤
γ ≤ 4/3 follow from the bounds established in Section III-B.
When5/9 ≤ γ ≤ 3/4, we derive a new set of genie-aided outer
bounds on the DoF. Our approach to deriving these new bounds
is similar to the approach taken in [13] and the exact detailsof
this derivation are presented in Appendix A.

The next theorem characterizes the sDoF/user of a two-cell,
two-or-three-user/cell MIMO cellular network.

Theorem 4.2 The spatially-normalized DoF of a 2-cell,K-
user/cell cellular network withK ∈ {2, 3}, havingM antennas
per user andN antennas per BS is given by

sDoF/user= D2,K(M,N). (19)

This result states that when spatial-extensions are allowed, the
outer bound presented in Theorem 4.1 is tight. The achievability
part of the result in Theorem 4.2 is based on a linear beamform-
ing strategy developed using the notion of packing ratios. We
elaborate further on this scheme in the next subsection.

Figs. 4 and 5 capture the main results presented in the above
theorems and plot sDoF/user normalized byN as a function of
γ. It can be seen in both the figures that, just as in the 3-user
interference channel [13], there is an alternating behavior in the
sDoF with eitherM or N being the bottleneck for a givenγ.

The figures also plot the boundary separating proper sys-
tems from improper systems. It is seen from the two fig-
ures that not all proper systems are feasible. For example,
for the two-cell three-users/cell case, networks withγ ∈
{1/6, 2/5, 5/9, 3/4, 4/3} are the only ones on the proper-
improper boundary that are feasible.

For the two-cell two-users/cell network, we can see from Fig.
4 that whenγ ∈ {1/4, 2/3, 3/2}, neitherM nor N has any
redundant dimensions, and decreasing either of them affects the
sDoF. On the other hand, whenM/N ∈ {1/2, 1}, bothM and
N have redundant dimensions, and some dimensions from either
M or N can be sacrificed without losing any sDoF. For all other
cases, only one ofM or N is a bottleneck. Similar observations
can also be made for the 2-cell 3-users/cell network from Fig.
5.

Figs. 4 and 5 also plot the achievable DoF using the decom-
position based approach. Interestingly, the only cases where the
decomposition based inner bound achieves the optimal sDoF
is when bothM and N have redundant dimensions i.e.,γ ∈
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Fig. 4: The sDoF/user (normalized byN ) of a 2-cell, 3-user/cell MIMO cellular network as a function of γ.

{1/2, 1} in the case of the two-cell, two-user/cell network and
whenγ ∈ {1/3, 1/2, 2/3, 1} in the case of the two-cell, three-
user/cell network.

2) Achievability of the Optimal sDoF: Packing Ratios

We now present the linear transmit beamforming strategy that
achieves the optimal sDoF of the two networks under consid-
eration. We consider achievability only in the uplink as duality
of interference alignment through linear beamforming ensures
achievability in the downlink as well. We start by introducing a
new notion called thepacking ratio to describe a collection of
transmit beamforming vectors.

Definition 4.2 Consider the uplink of a two-cell network and
let S be a collection of transmit beamformers used by users
belonging to the same cell. If the number of dimensions occupied
by the signals transmitted using this set of beamformers at the
interfering BS is denoted byd, then the packing ratioη of this
set of beamformers is given by|S| :d.

As an example, consider a two-cell, three-users/cell cellular
network with 2 antennas at each user and 3 antennas at each BS.
Suppose we design two beamformersv andw for two different
users in the same cell so thatH11,2v = H12,2w, then the set
of vectorsS = {v,w} is said to have a packing ratio of2 : 1.
As another example, for the same network, consider the case
whenM > N . Since users can now zero-force all antennas at
the interfering BS, we can have a setS of beamformers with
packing ratio|S| : 0.

When designing beamformers for the two-cell network, it is
clear that choosing sets of beamformers having a high packing
ratio is desirable as this reduces the number of dimensions
occupied by interference at the interfering BS. The existence of
beamformers satisfying a certain packing ratio is closely related

to the ratioγ (M/N ). For example, it is easily seen that when
γ < 2

3 , it is not possible to construct beamformers having a
packing ratio of3:1. Further even when beamformers satisfying
a certain packing ratio exist, there may not be sufficient sets of
them to completely use all the available dimensions at a BS.
In such a scenario, we need to consider designing beamformers
with the next best packing ratio.

Using the notion of packing ratios, we now describe the
achievability of the optimal sDoF of the two-cell three-users/cell
cellular network. We first define the setP23 = {1 : 0, 3 : 1, 2 :
1, 3 : 2, 1 : 1} to be the set of fundamental packing ratios for
the two-cell, three-users/cell cellular network. For any given γ,
our strategy is to first construct the sets of beamformers that
have the highest possible packing ratio from the setP23. If
such beamformers do not completely utilize all the available
dimensions at the two BSs, we further construct beamformers
having the next best packing ratio inP23 until all the dimensions
at the two BSs are either occupied by signal or interference.This
is illustrated in the following.

Consider the case2/3 < γ < 3/4 as an example. Note that
sinceM < N , no transmit zero-forcing is possible. Further,
note that each user can access onlyM of the N dimensions
at the interfering BS. Since we assumed all channels to be
generic, and2M > N , the subspaces accessible to any two
users overlap in2M−N dimensions. This2M−N dimensional
space overlaps with theM dimensions accessible to the third
user in3M−2N dimensions. Note that such a space exists as we
have assumed2/3 < γ. Thus, we can construct3M − 2N sets
of three beamformers (one for each user) that occupy just one
dimension at the interfering BS and thus have a packing ratioof
3:1. Assuming that the same strategy is adopted for users in both
cells, at any BS, signal vectors occupy a total of3(3M − 2N)
dimensions while interference occupies3M − 2N dimensions.
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TABLE I: The sets of beamformers and their corresponding packing ratios used to prove achievability of the optimal sDoF of the two-cell
two-user/cell network for different values ofγ.

γ (M/N)
Set of beamformers DoF/cell (No.

of
signal-vectors

per cell)Packing ratio No. of sets Packing ratio No. of sets

0 < γ < 1
4 1:1 2M – – 2M

1
4 ≤ γ ≤ 1

2 1:1 N
2 – – N

2

1
2 < γ < 2

3 2:1 2M −N 1:1 4N−6M
2 M

2
3 ≤ γ ≤ 1 2:1 2M −N – – 2N

3

1 < γ < 3
2 1:0 2(M −N) 2 :1 3N−2M

3
2M
3

3
2 ≤ γ 1:0 N – – N

Thus a total of4(3M − 2N) dimensions are occupied by signal
and interference. Since4(3M−2N) < N whenever4M < 3N ,
we see that such vectors do not completely utilize all theN
dimensions at a BS.

In order to utilize the remaining9N − 12M dimensions,
we additionally construct beamformers with the next highest
packing ratio (2 :1). Let M ′ = M − (3M − 2N) = 2N − 2M
denote the unused dimensions at each user. At the interfering BS,
each pair of users has2M ′−N dimensions that can be accessed
by both users. Note that since2M ′−N = 2(2N − 2M)−N =
3N −4M > 0, such an overlap exists almost surely. For a fixed
pair of users in each cell, we choose(3N − 4M) sets of two
beamformers (one for each user in the pair) whose interference
aligns onto a single dimension, so that each set has a packing
ratio of 2 : 1. After choosing beamformers in this manner,

we see that signal and interference span allN dimensions at
each of the two BSs. Through this process, each BS receives
3(3M − 2N)+2(3N− 4M) signaling vectors while interfering
signals occupy(3M − 2N)+ (3N− 4M) dimensions. We have
thus shown that3(3M−2N)+2(3N−4M) = M DoF/cell are
achievable. To ensure thatM/3 DoF/user are achieved, we can
either cycle through different pairs of users when designing the
second set of beamformers, or we can simply pick(3N−4M)/3
sets of beamformers for every possible pair of users in a cell. If
(3N − 4M)/3 is not an integer, we simply scaleN andM by
a factor of 3 to make it an integer. We can afford the flexibility
to scaleM andN because we are only characterizing the sDoF
of the network.

As another example, consider the two-cell, three-users/cell
network with 3/4 ≤ γ ≤ 1. When 3/4 ≤ γ ≤ 1, all three



TABLE II: The sets of beamformers and their corresponding packing ratios used to prove achievability of the optimal sDoFof the two-cell
three-user/cell network for different values ofγ.

γ
Set of beamformers DoF/cell (No. of

signal-vectors
per cell)Packing ratio No. of sets Packing ratio No. of sets

0 < γ < 1
6 1:1 3M – – 3M

1
6 ≤ γ ≤ 1

3 1:1 N
2 – – N

2

1
3 < γ < 2

5 3:2 3M −N 1:1 6N−15M
2

3M
2

2
5 ≤ γ ≤ 1

2 3:2 N
5 – – 3N

5

1
2 < γ < 5

9 2:1 3(2M −N) 3 :2 10N−18M
5

6M
5

5
9 ≤ γ ≤ 2

3 2:1 N
3 – – 2N

3

2
3 < γ < 3

4 3:1 3M − 2N 2:1 3N − 4M M

3
4 ≤ γ ≤ 1 3:1 N

4 – – 3N
4

1 < γ < 4
3 1:0 3(M −N) 3 :1 N − 3M

4
3M
4

4
3 ≤ γ 1:0 N – – N

users of a cell can access a3M − 2N dimensional space at
the interfering BS, thus3M − 2N sets of three beamformers
having a packing ratio of3 : 1 are possible. Note that3 : 1
is still the highest possible packing ratio. If users in bothcells
were to use such beamformers, signal and interference from such
beamformers can occupy at most4(3M−2N) > N dimensions
at any BS. Thus, when3/4 ≤ γ < 1, we have sufficient sets
of beamformers with packing ratio3 : 1 to use all available
dimensions at the BSs. ChoosingN/4 such sets provides us
with 3N/4 DoF/cell.

Such an approach to designing the linear beamformers pro-
vides insight on why the optimal sDoF alternates between
M and N . When γ is such that there are sufficient sets of
beamformers having the highest possible packing ratio, it is the
number of dimensions at the BSs that proves to be a bottleneck
and the DoF bound becomes dependent onN . On the other
hand, when there are not enough sets of beamformers having
the highest possible packing ratio, we are forced to design
beamformers with a lower packing ratio so as to use all available
dimensions at the two BSs. Since for a fixedN , the number
of sets of beamformers having the highest packing ratio is a
function of M , the bottleneck now shifts toM . We thus see
that for a large but fixedN , as we gradually increaseM , we
cycle through two stages—the first stage where beamformers
with a higher packing ratio become feasible but are limited to
a small number, then gradually, the second stage where there
are sufficiently many such beamformers. AsM is increased
even further, we go back to the scenario where the next higher
packing ratio becomes feasible however with only limited set of
beamformers, and so on.

The design strategy described for the case2/3 < γ ≤ 1 is
also applicable to other intervals ofγ, as well as the two-cell
two-users/cell network. For the two-cell three-user/cellnetwork,
when1/3 < γ ≤ 1/2, we design as many sets of beamformers
having packing ratio3 : 2 as possible, then use beamformers

having a packing ratio of1 : 1 (random beamforming) to fill any
unused dimensions at the two BSs. When1/2 < γ ≤ 2/3 we
first design as many sets of beamformers having packing ratio2 :
1 as possible and then use beamformers having a packing ratio of
3 : 2. Whenγ ≤ 1/3, it is easy to see that interference alignment
is not feasible and that a random beamforming strategy suffices.
Finally, whenγ ≥ 1, we first design beamformers that zero-force
the interfering BS (packing ratio1 : 0), then use beamformers
having a packing ratio of3 : 1 to fill any remaining dimensions
at each BS.

For the two-cell two-user/cell network we define the setP22 =
{1 : 0, 2 : 1, 2 : 1, 1 : 1} to be the set of fundamental packing
ratios. Whenγ > 1, we first design beamformers that zero-force
the interfering BS (packing ratio1 : 0), then if necessary, use
beamformers having a packing ratio of2 : 1 to fill any remaining
dimensions at each BS. When1/2 < γ ≤ 1, the highest possible
packing ratio is2 : 1, hence we first design beamformers having
packing ratio2 : 1 to occupy as many dimensions as possible at
the two BSs, then if there are unused dimensions at the two BSs,
we use random beamformers (packing ratio1 : 1) to occupy the
remaining dimensions. Whenγ ≤ 1/2, interference alignment
is not feasible and simple random beamforming achieves the
optimal DoF.

In Tables I and II, we summarize the strategies used for differ-
ent intervals ofγ, and list the number of sets of beamformers of
a certain packing ratio required to achieve the optimal DoF along
with the DoF achieved per cell. Note that fractional number of
sets can always be made into integers as we allow for spatial
extensions. We discuss finer details on constructing beamformers
using packing ratios in Appendix B.

B. Extending packing ratios to larger networks

It is possible to extend the notion of packing ratios to certain
larger networks. For e.g., the following theorem establishes the
optimal sDoF of two-cell networks with more than three users



per cell for certain values ofγ.

Theorem 4.3 The optimal sDoF/user of a three-cell,K-
user/cell MIMO cellular network withM antennas per user and
N antennas per BS whenγ ∈ (0, 1

K−1 ] is given by

DoF/user≤ min
(

M,max
(

N
2K , M2

)

, N
2K−1

)

,

and whenγ ≥ K
K+1 , the optimal sDoF/user are given by

DoF/user≤ min
(

max
(

N
K+1 ,

M
K+1

)

, N
K

)

.

The proof of this theorem follows directly from the outer
bounds established in Section III-B and designing beamformers
using the notion of packing ratios.

Extending the notion of packing ratios to any general cellular
network requires us to first identify the set of fundamental
packing ratios that play a crucial role in identifying the best
set of beamformers that can be designed for any given system.
Identifying these fundamental packing ratios requires an under-
standing of how multiple subspaces in a large network network
interact and enable interference alignment. In the absenceof a
coherent theory characterizing such interactions, this proves to
be a major bottleneck in extending packing ratios to general
cellular networks.

C. Unstructured Approach to Linear Beamforming Design

In this section, we focus on an approach to design linear
beamformers without having to explicitly infer the underlying
structure of interference alignment. We call this the unstructured
approach (USAP) to designing linear beamformers for interfer-
ence alignment and discuss the scope and limitations of suchan
approach.

Consider a(G,K,M,N) cellular network with the goal of
achievingd DoF/user without any symbol extensions. In the
uplink, note that each BS observesGKd streams of transmission
of which (G − 1)Kd streams constitute interference. Setting
asideKd dimensions at each BS for the received signals from
the in-cell users, the(G − 1)Kd interfering data streams must
occupy no more thanN−Kd dimensions at each BS. Assuming
(G− 1)Kd > N −Kd (no interference alignment is necessary
otherwise), we require the(G− 1)Kd transmit beamformers of
the interfering signals to satisfyGKd−N (= L) distinct linear
equations. In other words, for theith BS, we require

G
∑

l=1,l 6=i

K
∑

m=1

d
∑

n=1

αp
lmn,iH(lm,i)vlmn = 0, (20)

whereαp
lmn,i refers to the coefficient associated with the inter-

fering transmit beamformervlmn in thepth linear equation cor-
responding to theith BS. Thus, we haveGL linear vector equa-
tions, each involving a set of(G− 1)Kd transmit beamforming
vectors. Concatenating the transmit beamforming vectorsvlmn

into a single vectorv = [v111,v112, . . . ,v11d, . . . ,vGKd] and
by appropriately defining the matrixM, the GL linear vector
equations can be expressed as the matrix equationMv = 0.
Note thatM is aGLN ×GKMd matrix.

As an example, for the(3, 2, 3, 4) network with d = 1,
the linear matrix equationMv = 0 is given by (21). It is
known that for the above example, interference alignment is
feasible. In other words, it is known that there exists a set of
coefficients{αp

lmn,i} such that the system of equations in (21)
has a non-trivial solution. Note that the matrixM in this case
is a24×18 matrix (system of 24 equations with 18 unknowns),
and that a random choice of coefficients{αp

lmn,i} results in
a matrixM having full column rank, rendering the system of
equations infeasible. Determining the right set of coefficients is
non-trivial and highlights a particular difficulty in finding aligned
beamformers using the set of system of equations characterized
by Mv = 0.1

Now, suppose we append an additional antenna to each
BS, thereby creating a(3, 2, 3, 5) network and then consider
designing transmit beamformers to achieve 1 DoF/user, it can
be shown that the transmit beamformers now need to satisfy a
system of equations of the formMv = 0, whereM is a12×18
matrix. It is easy to see that even a random choice of coefficients
permits non-trivial solutions to this system of equations.The
ability to choose a random set of coefficients is quite significant
as instead of solving a set of bilinear polynomial equationsfor
interference alignment, we now only need to solve a set of linear
equations. We thus have two networks, namely, the(3, 2, 3, 4)
network and the(3, 2, 3, 5) network that significantly differ in
how aligned beamformers can be computed. This points to a
much broader divide among MIMO cellular networks.

While aligned beamformers satisfy the system of equations
Mv = 0 for a set of coefficients, not all solutions toMv = 0

with a fixed set of coefficients form aligned beamformers. A
vector v̂ satisfyingMv̂ = 0, can be considered to constitute a
set of aligned beamformers provided (a) the set of beamformers
corresponding to a user are linearly independent, i.e.,Vij is full
rank ∀i, j; (b) the signal received from a user at the intended
BS is full rank i.e.,Hij,iVij is full rank; and (c) signal and
interference are separable at each BS. Since we assume generic
channel coefficients and since direct channels are not used in
forming the matrixM, (c) is satisfied almost surely, while (b)
is true under the assumption of generic channel coefficients
provided (a) is true.

SinceM is aGLN×GKMd matrix, wheneverLN < KMd
the system of equationsMv = 0 permits a non-trivial solution
for any random choice of coefficients. WhenLN < KMd,
a solution to the equationMv = 0 can be expressed aŝv =
det(MMH)(I−MH(MMH)−1M)r, wherer is aGKMd×1
vector with randomly chosen entries. Forv̂ to qualify as a solu-
tion for interference alignment, we need to ensure that condition
(a) is satisfied, i.e., we need to ensure that the set of transmit
beamformerŝvij1, v̂ij2 . . . v̂ijd obtained fromv̂ are linearly
independent for anyi ∈ {1, 2, . . . , G}, j ∈ {1, 2, . . . ,K}.
LettingV̂ij be theM×d matrix formed usinĝvij1, v̂ij2 . . . v̂ijd,

1Another classic example in this context is the three-user interference channel
with two antennas at each node, where it is known that 1 DoF perreceiver is
achievable [4]. The matrixM in this case is a6× 6 matrix with no non-trivial
solutions toMv = 0 unless the coefficients are chosen carefully. The set of
aligned transmit beamformers in this case are the eigen vectors of an effective
channel matrix, with the coefficients being related to the eigen values of this
effective channel matrix.
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checking for linear independence is equivalent to checkingif the
determinant of the matrix[V̂ij Rij ], whereRij is a(M−d)×d
matrix of random entries, is non-zero or not.

Since the determinant of[V̂ij Rij ] is a polynomial in the
variablesRij , r, the coefficients{αp

lmn,i}, and the channel
matrices{H(lm,i)}, checking for linear independence of the
transmit beamformers is equivalent to checking if this poly-
nomial is the zero-polynomial or not. This problem is known
as polynomial identity testing (PIT) and is well studied in
complexity theory [33]. While a general deterministic algorithm
to solve this problem is not known, a randomized algorithm
based on the Schwartz-Zippel lemma [34], [35] is known and
involves evaluating this polynomial at a random instance ofRij ,
r, {αp

lmn,i}, and{Hlm,i}. If the value of the polynomial at this
point is non-zero, then this polynomial is determined to be not
identical to the zero-polynomial. Further, it can be concluded
that this polynomial evaluates to a non-zero value for almost all
values ofRij , r, {αp

lmn,i}, and{Hlm,i}. If on the other hand,
the polynomial evaluates to the zero, the polynomial is declared
to be identical to the zero-polynomial and this statement istrue
with a very high probability as a consequence of the Schwartz-
Zippel lemma.

Thus, wheneverLN < KMd, we propose a two step
approach to designing aligned beamformers. We first pick a set
of random coefficients, form the linear equations to be satisfied
by the transmit beamformers and then compute a set of transmit
beamformers by solving the system of linear equations. We then
perform a numerical test to ensure that the transmit beamformers
are indeed linearly independent. If the transmit beamformers
pass the numerical test then they can be considered to be a set
of aligned transmit beamformers. Further, if such a procedure
works for a (G,K,M,N) network with d DoF/user for a
particular generic channel realization, then such a procedure
works almost surely for all generic channel realizations ofthis
network. This observation allows us to construct a numerical
experiment to verify the limits of using such an approach.

The numerical experiment we perform is outlined as follows.
We consider a network withG cells andK users. For this
network, we consider all possible pairs ofM andN such that
M ≤ Mmax,N ≤ Nmax whereMmax and Nmax are some
fixed positive integers. For a fixedM andN , we then consider
the feasibility of constructing aligned beamformers usingthe
method described above in order to achieved DoF/user where
d is such thatL > 02, LN < KMd, d ≤ M , Kd ≤ N ,

2When L ≤ 0, random transmit beamforming in the uplink achieves the
necessary DoF.

M < GKd 3, gcd(M,N, d) = 14 and (G,K,M,N) form a
proper system. For such a set ofM , N andd, we generate an
instance of generic channel matrices and proceed to carry out
the two step procedure outlined earlier. Such a procedure issaid
to be successful if the polynomial test returns a non-zero value
and unsuccessful otherwise. If successful, we conclude that such
a procedure can be reliably used to design transmit beamformers
for almost all channel instances of the(G,K,M,N, d) network
under consideration. When unsuccessful, we conclude that with
a very high probability such a procedure does not yield a set of
aligned transmit beamformers for almost all channel instances.

While we considered designing transmit beamformers in the
uplink (USAP-uplink) using random linear vector equations, we
can alternately consider designing transmit beamformers in the
downlink (USAP-downlink) using the same process. For the
(G,K,M,N, d) network, it can be shown thatGK(GKd −
M)M < GKdN is a necessary condition for the linear system
of equations obtained in USAP-downlink to have a non-trivial
solution. While there are no significant differences between
USAP-uplink and USAP-downlink for the interference channel
(K = 1), a major difference emerges for cellular networks
whereK > 1. For cellular networks, when designing transmit
beamformers in the downlink, direct channels get involved in the
linear system of equations and as a result, a solution to the linear
system is no longer guaranteed to satisfy conditions (b) and
(c) even when channel coefficients are generic. In this respect,
USAP-uplink has a significant advantage over USAP-downlink
for cellular networks. In addition, for cellular networks,the
necessary conditionGK(GKd−M)M < GKdN places further
restrictions on the applicability of USAP-downlink in the context
of achieving the optimal DoF.

We discuss the scope and limitations of USAP-uplink and
USAP-downlink in the next section. For better clarity, we present
our observations for the interference channel(K = 1) and the
cellular network separately(K > 1).

1) Unstructured Approach for the MIMO Interference Channel

In Fig. 6 we sketch some well known bounds on the normalized
sDoF/user (sDoF/user/N ) as a function ofγ ∈ (0, 1] for the
G-user(G > 3) interference channel. By symmetry, it suffices
to only considerγ ≤ 1. Except for the three-user interference
channel, the proper-improper boundary and decomposition based

3WhenM ≥ GKd, random transmit beamforming in the downlink achieves
the necessary DoF.

4Spatial scale invariance states that ifd DoF/user are feasible for a
(G,K,M,N) network, thensd DoF/user are feasible in a(G,K, sM, sN)
network wheres ∈ Z+ denotes the scale factor. While no proof of such a
statement is available, no contradictions to this statement exist to the best of
our knowledge.
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Fig. 6: Inner and outer bounds on the DoF of theG-user interference channel. The optimal DoF is conjecturedto consist of infinitely many
piecewise-linear components whenγ ≤ γl, while the decomposition based approach determines the optimal DoF whenγ > γl.

inner bound intersect at a pointγl < 1 and this point is
conjectured to split the optimal sDoF characterization into a
piecewise-linear region and a smooth region characterizedby the
decomposition based inner bound [8], [36]. A simple DoF bound
obtained by letting all the BSs or users5 cooperate (denoted as
MAC/BC DoF bound) is also plotted along with the maximum
achievable sDoF using random transmit beamforming in the
uplink. We also plot the curves characterizing the necessary
conditions for USAP-uplink and USAP-downlink to be appli-
cable. It can be shown that these two conditions, the proper-
improper boundary and decomposition inner bound all intersect

at γl =
(G−1)−

√
(G−1)2−4

2 .
We first narrow our focus to region I (shaded blue) in

Fig. 6, where the optimal sDoF is conjectured to exhibit a
piecewise-linear behavior. In the case of 3-user interference
channel, the point of intersectionγl is equal 1, and a com-
plete characterization of this piecewise-linear behaviorfor all
γ ∈ (0, 1] is provided in [13]. Since region I lies below the
necessary condition for USAP-uplink/USAP-downlink, USAP-
uplink/USAP-downlink is applicable for any(M,N, d) such that
(M/N, d/N) falls in this region. Since the optimal sDoF of the
three-user interference channel are known, we test the scope of
USAP-uplink for this channel and compare with the available
results.

We carry out the numerical experiment described earlier for

5To be consistent with the previous sections, we refer to nodes with N
antennas as BSs and nodes withM antennas as users and use the usual notions
of uplink and downlink.

the three-user interference channel with values ofM , N , andd
such that(M/N, d/N) falls in region I, withNmax = Nmax =
75. The results of this experiment are shown in Fig. 7, where
we observe that a clear piecewise-linear boundary emerges
between the successful and unsuccessful trials on the polynomial
test. This boundary matches with the piecewise-linear behavior
detailed in [13], suggesting that such an approach is capable
of achieving the optimal sDoF of the three-user interference
channel. We also observe that the boundary characterizing
the necessary conditions for USAP-uplink has no particular
significance and the success or failure of the proposed method
is completely determined by the polynomial identity test.

A similar piecewise linear boundary also emerges in the
case of the four-user interference channel as seen in Fig 8
for γ ∈ (0, γl]. These results are in-line with the results
on the optimal sDoF of this network as established in [27].
Further, in contradiction to the conjecture in [8] stating that
when γ ≥ 3/8, the decomposition based approach achieves
the optimal DoF, we see from Fig. 8 that the piecewise-linear
behavior extends further, all the way up toγl. As an example,
numerical experiments show that the (4, 1, 11, 29) network has
8 DoF/user, and it is easy to see that this system lies strictly
above the decomposition based inner bound. In fact, this is a
feasible system lying right on the proper-improper boundary.

Taking these observations into consideration, we conjecture
that for anyG-user interference channel, wheneverγ ∈ (0, γl],
the optimal sDoF exhibits a piecewise-linear behavior and the
optimal sDoF in this regime can be achieved by constructing
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linear beamformers using the proposed method.

Next, we shift focus to region II (shaded yellow) in Fig.
6. This region lies entirely below the decomposition based
inner bound and does not impact the characterization of the
optimal sDoF. Also note that this region lies below the proper-
improper boundary and the necessary condition for USAP-
uplink, thus making USAP-uplink applicable in this region.
This region is bounded below by the maximum DoF that can
be trivially achieved using random transmit beamforming in
the uplink. It is of interest to know if USAP-uplink can be
used to construct aligned beamformers for(M,N, d) such that
(M/N, d/N) falls in this region. We carry out the numerical
experiment outlined earlier on the four-user interferencechannel
for values of (M ,N ,d) such that the(M/N, d/N) falls in region
II, with Nmax = Nmax = 75. The results are presented in
Fig. 9, where it is seen that the necessary condition for USAP-
uplink, LN < KMd, completely determines the success of the
proposed method, with the subsequent numerical test proving to
be redundant. It is also significant to note that these results bring
to light a computational boundary that divides systems for which
computing transmit beamformers for interference alignment is
easy(requires solving a system of linear equations; no worse
than O((GKMd)3)) in complexity) and systems that require
techniques of higher complexity such as iterative algorithms
[29]–[32] to design such transmit beamformers.

So far, except for networks where the underlying structure
for interference alignment is known (the three-user interference
channel etc.), solving for aligned beamformers of a given
network meant solving a system of bilinear equations through
computationally intensive iterative algorithms that can some-
times take several thousand iterations to converge [37]. Our

observations suggest that except when the DoF demandd placed
on a (G, 1,M,N) network is such that(M/N, d/N) is sand-
wiched between the necessary condition for USAP-uplink and
the proper-improper boundary andγ ≥ γl, iterative algorithms
are not necessary and that the aligned beamformers can be
computed by simply solving a system of linear equations.

It can be shown that USAP-downlink also exhibits a similar
piecewise linear behavior wheneverγ < γl. When γ > γl,
since the necessary condition for USAP-uplink lies above the
necessary condition for USAP-downlink, the set of systems that
can take advantage of the proposed method remains unchanged.

2) USAP-uplink for MIMO Cellular Networks

Fig. 10 is a sketch analogous to Fig. 6 and applies to any
MIMO cellular network, with the exception of the two-cell,
two-user/cell and the two-cell, three-user/cell networks. Note
that γ is no longer restricted to(0, 1]. While the necessary
condition for USAP-uplink, the proper-improper boundary and
the decomposition based inner bound all intersect at the same
two points γl and γr, the same is not true for the necessary
condition of USAP-downlink. Extending the insights gained
from the interference channel, the optimal sDoF of a general
cellular network is expected to have a piecewise-linear behavior
in regions I (γ < γl) and III (γ > γr) (see Fig. 10), with
the decomposition based inner bound characterizing the optimal
DoF wheneverγl ≤ γ ≤ γr.

Focusing on regions I and III, we note that USAP-uplink is
applicable to all points in these two regions. To gain insight on
the scope of this technique for cellular networks, we perform the
numerical experiment outlined earlier for the 2-cell 4-user/cell
network. For this network, the proper-improper boundary and the
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decomposition based inner bound touch each other atγ = 1/2,
i.e., γl = γr = 1/2, with the decomposition based inner bound
lying entirely below the proper-improper boundary. The results
of the numerical experiment are plotted in Fig. 12 and it is easy
to see that a clear piecewise linear boundary emerges between
the successful and unsuccessful trials, with the successful or
failure of the proposed method completely determined by the
polynomial identity test. This boundary matches with the opti-
mal sDoF of this network, as computed in [27].

These observations motivate us to extend our earlier con-
jecture to cellular networks and state that for anyG-cell K-
user/cell cellular network with(G,K) /∈ {(2, 2), (2, 3)}, when
γ ∈ (0, γl] ∪ [γr∞) the optimal sDoF can be achieved by
constructing linear beamformers using the proposed method.
Further, the optimal sDoF in this regime exhibits a piecewise
linear behavior as also observed in [27], where a structured
approach to linear beamforming is used to establish these results,
unlike the approach discussed here.

Observations on the applicability of USAP-uplink in region
II6 are similar to observations made in the context of the inter-
ference channel. By running the numerical experiment on the3-
cell, two-user/cell network for(M,N, d) such that(M/N, d/N)
lies in region II, we note that the necessary conditionLN <

6Note that for cellular networks withG > 4, the inner bound obtained
through random transmit beamforming in the downlink(GKd ≤ M) and the
USAP-uplink’s necessary condition(LN < KMd) intersect at two points,
thereby splitting region II into two separate parts. This does not alter any of the
observations made in this section.

KMd also ensures the success of the polynomial test.
A major difference between interference channels and cellular

networks arises with respect to the scope and limitations of
USAP-downlink. It is clear from Fig. 10 that due to the natureof
the necessary condition associated with USAP-downlink, USAP-
downlink cannot be used to establish the same piecewise linear
behavior in regions I and III, as observed with USAP-uplink.
Further, as stated earlier, since direct channels get involved
in the linear system generated by USAP-downlink, verifying
that a solution to the linear system also satisfies conditions for
interference alignment involves further checks such as ensuring
the separability of signal and interference. Due to these reasons,
the utility of USAP-downlink for cellular networks is quite
limited and offers no particular advantages over USAP-uplink.

V. CONCLUSION

In this paper we investigate the DoF of MIMO cellular
networks. In particular we establish the achievable DoF through
the decomposition based approach and linear beamforming
schemes. Through a new set of outer bounds, we establish
conditions for optimality of the decomposition based approach.
Through these outer bounds it is apparent that the optimal
DoF of a generalG-cell, K-users/cell network exhibits two
distinct regimes, one where decomposition based approach
dominates over linear beamforming and vice-versa. With regard
to linear beamforming, we develop a structured approach to
linear beamforming that is DoF-optimal in small networks such
as the two-cell two-users/cell network and the two-cell three-
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users/cell network. We also develop an unstructured approach to
linear beamforming that is applicable to general MIMO cellular
networks and through numerical experiments, show that suchan
approach is capable of achieving the optimal-sDoF for a wide
class of MIMO cellular networks.

Although the structured design of linear beamformers takesa
disciplined approach to constructing beamformers, it is rendered
irrelevant by the wide applicability of the unstructured approach
and its ability to achieve the optimal sDoF in regimes where
the optimal sDoF exhibits a piecewise-linear behavior. The
remarkable effectiveness of the unstructured approach warrants a
deeper investigation on the role of random coefficients in design-
ing aligned beamformers. Further, the additional flexibility in
choosing these coefficients opens up the potential to draw these
coefficients from continuous distributions that are optimized to
maximize some ancillary benefits such as better robustness to
channel uncertainity.

With the unstructured approach providing a unified approach
to designing DoF-optimal beamformers, without the need to
customize the design to each network, we are one step closer
to a complete characterization of the DoF of MIMO cellular
networks.

APPENDIX A
DOF OUTER BOUND FORTWO-CELL THREE-USERS/CELL

MIMO CELLULAR NETWORK WHEN 5
9 ≤ γ < 3

4

In this section we show that for the two-cell three-users/cell
MIMO cellular network whenever59 ≤ γ ≤ 3

4 , no more
than max

(

2N
9 , M

3

)

DoF/user are possible. Since there is no
duality associated with the information theoretic proof presented

here, we need to establish this result separately for uplinkand
downlink. Similar to [13], we first perform an invertible linear
transformation at the users and the base-stations. The linear
transformation involves multiplication by a full rank matrix at
each user and BS. Let theM×M transformation matrix at user
(i, j) be denoted asTij and theN×N transformation matrix at
BS ī be denoted asRī. Using these transformations the effective
channel between user(i, j) and BSī is given byRīH(ij,̄i)Tij .
Subsequent to this transformation, we first consider the uplink
scenario and identify genie signals that enable the BSs to decode
all the messages in the network and set up a bound on the sum-
rate of the network. Using the same transformation, we then
identify genie signals to establish the bound in the downlink.
We start by considering the case when5/9 ≤ γ ≤ 2/3.

Throughout this section we use the relative indicesi and
ī when referring to the two cells and use the notationij to
denote thejth user in ith cell. The vector random variables
corresponding to the transmit signalx, received signaly and
additive noisez are denoted asX, Y andZ, respectively.W
denotes a uniform discrete random variable associated withthe
transmitted message at a transmitter.

1) DoF Outer Bound When5/9 ≤ γ ≤ 2/3

We divide the set ofN antennas at BS̄i into three groups and
denote them as̄ia, īb and īc. The sets̄ia and īc contain the first
and lastN −M antennas each while setīb has the remaining
2M − N antennas. Let theM antennas at userij be denoted
as ijk wherek ∈ {1, 2, · · · ,M}. Using a similar notation for
BS antennas, letH(ij,̄ip:̄iq) represent the channel from userij
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Fig. 10: Inner and outer bounds on the DoF of theG-cell, K-user/cell network. The optimal DoF is conjectured to consist of infinitely many
piecewise-linear components forγ ≤ γl andγ ≥ γr, while the decomposition based approach determines the optimal DoF whenγl < γ < γr.

to the subset of BS antennas from thepth antenna to theqth

antenna.
We first focus on theN×M channel from useri1 to BS ī. We

set the firstN −M rows ofRī to be orthogonal to the columns
of Hij,̄i. SinceH(ij,̄i) spans onlyM of theN dimensions at BS
ī, it is possible to choose such a set of vectors. Similarly, the next
2M−N andN−M rows ofRī are chosen to be orthogonal to
useri2 and useri3 respectively. Since all channels are assumed
to be generic, matrixRī is guaranteed to be full rank almost
surely.

On the user side, useri1 inverts the channel to the lastM
antennas of BS̄i, i.e.,Ti1 = (H(i1,̄iN−M+1:̄iN))

−1, while user
i3 inverts the channel to the firstM antennas of BS̄i, i.e.,
Ti3 = (H(i1,̄i1:̄iM))

−1. We let Ti2 = I. The signal structure
resulting from such a transformation is shown in Fig. 13.

a) DoF Bound in the Uplink:Let wij be the message from
userij to BS ī. This message is mapped to aMn×1 codeword
xn
ij , wheren is the length of the code. = We use the notation

xn
ijp to denote the transmitted signal on thekth antenna over

the n time slots and the notationxijp:ijq to denote the signal
transmitted by userij using antennasp, p+1, . . . , q. We denote
the rate to userij as Rij , the total sum-rate of the network
asRsum and the collection of all messages in the network as
{wij}.

Now, consider providing the set of signalsS1 =
{x̃n

i2, x̃
n
i11:i1(2M−N)} to BS ī. We usex̃n to denotexn + zn

wherezn is circular symmetric Gaussian noise that is artificially
added to the transmitted signalxn. Since we seek to establish
a converse, we assume that BSī can decode all the messages

from its users. After decoding and subtracting these signals from
the received signal, the resulting signals at the three antenna
sets are given in Fig. 13 wheregī∗(·) represents a noisy linear
combination of its arguments. GivenS1, we can subtractxn

i2

from gīc(xi1(2M−N+1):i1M , xi2) and along withx̃n
i11:i1(2M−N)

from S1, we can decodewi1 subject to noise distortion. After
decodingwi1, and subtractingxn

i1 and xn
i2 from the received

signal,wi3 can also be decoded subject to noise distortion. Since
BS ī can recover all the messages in the network givenyn

ī
and

S1 subject to noise distortion, we have

nRsum

a

≤ I
(

{Wij};Yn
ī ,S1

)

+ no(log ρ) + o(n)

b

≤ Nn log ρ+ h(X̃n
i2, X̃

n
i11:i1(2M−N)|Yn

ī ) + no(log ρ) + o(n)
c

≤ Nn log ρ+ nRi2 + h(X̃n
i11:i1(2M−N)) + no(log ρ) + o(n)

(22)

where (a) follows from Fano’s inequality, (b) follows from
Lemma 3 in [13] and (c) follows from the fact that conditioning
reduces entropy.

Next, consider providing the set of signalsS2 =
{x̃n

i3, x̃
n
i1(2M−N+1):i1M } to BS ī. After subtractingx̃n

i3 from
the received signal, the BS can recoverwi2 from observations at
antenna sets̄ia and īc subject to noise distortion. Subsequently,
BS ī can also recoverwi1 subject to noise distortion. Since BS
ī can recover all messages when provided with the genie signal
S2, using similar steps as before, we obtain



0x
0y  

 

1
2

2
√
2+1

7
√
2

· ·

2
√
2−1

7
√
2

· ·
1
6

√
2−1√
2

√
2+1√
2

1
6

5
2

31

γ2

6γ−1
γ+1
7

1
2(3−γ)

γ
2γ+1

γ
6

γ (M/N)

N
o

rm
al

iz
ed

D
o

F
/u

se
r

MAC/BC DoF bound

USAP-uplink necessary condition

Proper-improper boundary

Random beamforming in uplink/downlink
Decomposition based inner bound

USAP-downlink necessary condition

USAP-uplink successful
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nRsum

≤ I
(

{Wij};Yn
ī ,S2

)

+ no(log ρ) + o(n)

≤ Nn log ρ+ h(X̃n
i3, X̃

n
i1(2M−N+1):i1M |Yn

ī )

+ no(log ρ) + o(n)

≤ Nn log ρ+ nRi3 + h(X̃n
i1(2M−N+1):i1M |X̂n

i11:i1(2M−N))

+ no(log ρ) + o(n)

≤ Nn log ρ+ nRi3 + nRi1 − h(X̂n
i11:i1(2M−N))

+ no(log ρ) + o(n)

, (23)

whereX̂n
i1 denotesXn

i1 corrupted by channel noise.
Adding (22) and (23) we get,

2nRsum ≤2nN log ρ+
∑

j=1,2,3

nRij + no(log ρ) + o(n) (24)

Using a similar inequality for BSi, we can write

3nRsum ≤4nN log ρ+ no(log ρ) + o(n) (25)

Letting n → ∞ andρ → ∞, we see that DoF/user≤ 2N
9 .

b) DoF Outer Bound in the Downlink:Using same nota-
tion as before, consider providing useri1 with the genie signal
S1 = (wi2, wi3,x

n
ĩa
). Since we are interested in establishing an

outer bound, we assume all the users in the network can decode
their own messages. Since useri1 can decodewi1, usingS1,
user i1 can reconstructxn

ia, xn
ib and xn

ic, and subtract them

from the received signalyn
i1. Using the signal obtained after

subtractingxn
ia, xn

ib andxn
ic from yn

i1 and usingxĩa) from S1,
useri1 can now decode messageswī1, wī1 andwī1 subject to
noise distortion. Since useri1 can decode all messages in the
network givenyn

i1 andS1, we have

nRsum ≤ I ({Wij};Yn
i1,S1) + no(log ρ) + o(n)

≤ nM log ρ+ nRi2 + nRi3 + h(X̃n
īa|Yn

i1,Wi2,Wi3)

+ no(log ρ) + o(n)

≤ nM log ρ+ nRi2 + nRi3 + h(X̃n
īa|X̂n

īb, X̂
n
īc)

+ no(log ρ) + o(n). (26)

Next, consider providing useri3 with the genie signalS3 =
(wi1, wi2,x

n
ĩc
). Following the exact same steps as before, we

get

nRsum ≤ nM log ρ+ nRi2 + nRi3 + h(X̃n
īa|X̂n

īb, X̂
n
īc)

+ no(log ρ) + o(n). (27)

Now consider providing useri2 with the genie signalS2 =
(wi1, wi3, x̃

n
īb
, x̃n

ī(M+1):̄i(2N−2M)
). Note thatxn

ī(M+1):̄i(2N−2M)
forms a part of the signalxn

īc
. After subtracting the transmitted

signals from BSi, useri2 has2N − 2M noisy linear combi-
nations of the signalsxn

ia andxn
ic, which along withx̃n

īb
from

S2 can be used to decode all the messages from BSī subject
to noise distortion. As before, we can write
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Fig. 13: The signal structure obtained after linear transformation for the case whenγ ≤ 2/3. Note that the figure does not include signals from
the same cell.

nRsum

≤ I ({Wij};Yn
i1,S2) + no(log ρ) + o(n)

≤ nM log ρ+ nRi1 + nRi3

+ h(X̃n
īb, X̃

n
ī(M+1):̄i(2N−2M)|Yn

i1,Wi1,Wi3) + no(log ρ)

+ o(n)

≤ nM log ρ+ nRi1 + nRi3 + h(X̃n
ī(M+1):̄i(2N−2M))

+ h(X̃n
īb|X̂n

īa, X̂
n
īc) + no(log ρ) + o(n)

≤ nM log ρ+ nRi1 + nRi3 + n(2N − 3M) log ρ

+ h(X̃n
īb|X̂n

īa, X̂
n
īc) + no(log ρ) + o(n)

≤ n(2N − 2M) log ρ+ nRi1 + nRi3 + h(X̃n
īb|X̂n

īa, X̂
n
īc)

+ no(log ρ) + o(n) (28)

Adding (26), (30) and (28), we get

n3Rsum

≤ n2N log ρ+
3

∑

j=1

n2Rij + h(X̃n
īa|X̂n

īb, X̂
n
īc) + h(X̃n

īb|X̂n
īc, X̂

n
īa)

+ h(X̃n
īc|X̂n

īb, X̂
n
īa) + no(log ρ) + o(n)

≤ n2N log ρ+

3
∑

j=1

n2Rij + h(X̃n
īa) + h(X̃n

īb|X̂n
īa)

+ h(X̃n
īc|X̂n

īb, X̂
n
īa) + no(log ρ) + o(n)

≤ n2N log ρ+

3
∑

j=1

n2Rij +

3
∑

j=1

nRīj + no(log ρ) + o(n)

(29)



Using a similar inequality for users in cellī, we can write

n6Rsum ≤ n4N log ρ+ n3Rsum + no(log ρ) + o(n)

(30)

Letting n → ∞ andρ → ∞, we see that DoF/user≤ 2N
9 .

2) DoF Outer Bound when2/3 ≤ γ ≤ 3/4

In this case, we again group the antennas at BSī into three
groups exactly as before. TheM antennas at each user are
also grouped into three sets as shown in Fig. 14. The linear
transformation at BS̄i is also same as before, i.e., each group
of antennas zero-forces one of three users.

On the user side,Ti1 for useri1 is chosen such thati1a zero-
forcesīb while i1b andi1c both zero-forcēic. Similarly,Ti3 is
chosen so thati3c zero-forces̄ib, while i3b and i3c both zero-
force īa and finally Ti2 is chosen such thati2a zero-forces
īa, while i2b and i2c both zero-forcēic. The resulting signal
structure at BS̄i after removing signals from Cell̄i is given in
Fig. 14.

a) DoF Outer Bound in the Uplink:Consider providing
the set of signalsS1 = {x̃n

i1, x̃
n
i2b, x̃

n
i2c} to BS ī. After decoding

the messages from users in Cellī, we see that usingS3, we can
first decodewi2 followed by wi3, subject to noise distortion.
Since BSī can recover all the messages in the network given
yn
ī

andS1, subject to noise distortion, we have

nRsum

≤ I
(

{Wij};Yn
ī ,S1

)

+ no(log ρ) + o(n)

≤ Nn log ρ+ h(X̃n
i1, X̃

n
i2b, X̃

n
i2c|Yn

ī ) + no(log ρ) + o(n)

≤ Nn log ρ+ nRi1 + h(X̃n
i2b, X̃

n
i2c|X̂n

i2a) + no(log ρ) + o(n)

≤ Nn log ρ+nRi1 +nRi2 −h(X̂n
i2a) + no(log ρ) + o(n),

(31)

whereX̂n
i2a denotesXn

i2a corrupted by channel noise.
Next, we consider the genie signalS2 = {x̃n

i3, x̃
n
i2a, x̃

n
i2b}. It

can once again be shown that BSī can recover all the messages
in the network givenyn

ī
andS2. Going through similar steps as

before, it can be shown that

nRsum ≤ (3M −N)n log ρ+ nRi3 + h(X̃n
i2a)

+ no(log ρ) + o(n). (32)

Adding (31) and (32), we get

2nRsum ≤3Mn log ρ+
∑

j=1,2,3

nRij + no(log ρ) + o(n). (33)

By symmetry we must also have an analogous inequality involv-
ing the ratesRīj , and adding these two inequalities, we get

3nRsum ≤6Mn log ρ+ no(log ρ) + o(n) (34)

Letting n → ∞ andρ → ∞, we see that DoF/user≤ M
3 .

b) DoF Outer Bound in the Downlink:Consider providing
the genie signalS1 = {wi2, wi3, x̃ia} to user i1. It can be
shown that user i1 can decode all the messages in the network
using the received signal and the genie signal subject to noise
distortion. Hence, using similar steps as before, we can write

nRsum ≤ I ({Wij};Yn
i1,S1) + no(log ρ) + o(n)

≤ nM log ρ+Ri2 +Ri3 + h(X̃īa|X̂īa, X̂īa)

+ no(log ρ) + o(n)

(35)

Using identical genie signalsS2 = {wi1, wi3, x̃ib} andS3 =
{wi1, wi2, x̃ic} for usersi2 and i3 respectively, we obtain the
following two inequalities:

nRsum ≤ nM log ρ+Ri1 +Ri3 + h(X̃īb|X̂īa, X̂īc)

+ no(log ρ) + o(n), (36)

nRsum ≤ nM log ρ+Ri1 +Ri2 + h(X̃īc|X̂īa, X̂īb)

+ no(log ρ) + o(n). (37)

Adding the inequalities in (35), (36) and (37), we get

3nRsum ≤3nM log ρ+

3
∑

j=1

2nRij +

3
∑

j=1

nRīj

+ no(log ρ) + o(n). (38)

Using a similar set of genie signals for users in cellī, we can
establish a corresponding inequality on the sum-rate. Adding
these two inequalities gives us

6nRsum ≤6Mn log ρ+ 3nRsum + no(log ρ) + o(n). (39)

Letting n → ∞ andρ → ∞, we see that DoF/user≤ M
3 .

APPENDIX B
THE ACHIEVABILITY OF THE OPTIMAL SDOF FOR THE

TWO-CELL TWO-USERS/CELL NETWORK AND THE

TWO-CELL THREE-USERS/CELL NETWORK

In this section we provide further details on the linear beam-
forming strategy used to achieve the optimal sDoF for the two-
cell two-users or three-users per cell MIMO cellular networks.
We consider designing transmit beamformers in the uplink. By
duality of linear interference alignment, the same strategy also
holds in downlink.

1) Linear Beamforming Strategy for the Two-Cell,
Two-Users/Cell Network

We divide the discussion in this section into six cases, each
corresponding to one of the six distinct piece-wise linear regions
in Fig. 4. Since we assume generic channel coefficients, we do
not need to explicitly check to make sure that (a) interference
and signal are separable at each BS and (b) signal received
from a user at the intended BS occupies sufficient dimensions
to ensure all data streams from that user are separable (i.e.,
H(ij,i)Vij is full rank for all i and j). We however need to
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Fig. 14: The signal structure obtained after linear transformation whenγ ≥ 2/3. The figure does not include signals from the same cell.

ensure that the set of beamformers designed for a user are
linearly independent.

Case i: 0 < γ ≤ 1/4: Each user here requiresM DoF.
It is easy to observe that sinceN ≥ 4M , random uplink
transmit beamforming in the uplink suffices. The BSs have
enough antennas to resolve signal from interference. Note that
no spatial extensions are required here.

Case ii: 1/4 ≤ γ ≤ 1/2: The goal here is to achieveN/4
DoF/user. IfN/4 is not an integer, we consider a space-extension
factor of four, in which case we have4M antennas at the users
and4N antennas at the transmitter. Since we needN DoF/user
and the BSs now have4N antennas, we once again see that
random uplink transmit beamforming suffices.

Case iii: 1/2 < γ < 2/3: Since each user requiresM/2
DoF/user, we consider a space-extension factor of two so that
there are2M antennas at each user and2N antennas at each
BS. The two users in the second cell each have access to a
2M dimensional subspace at the first BS. These two subspaces
overlap in 4M − 2N dimensions. Note that sinceγ > 1/2,
4M > 2N , such an overlap almost surely exists. The two users
in cell 2 pick4M−2N linear transmit beamformers so as to span
this space and align their interference. Specifically, the transmit
beamformersv21j and v22j for j = 1, . . . , (4M − 2N) are
chosen such that

H(21,1)v21j = H(22,1)v22j

⇒
[

H(21,1) −H(22,1)

]

[

v21j

v22j

]

= 0. (40)

The 4M − 2N sets of solutions to (40) can be generated using
the expressiondet(AAH)(I − AH(AAH)−1A)r whereA =
[

H(21,1) −H(22,1)

]

andr is a random vector. Adopting the same
strategy for cell 1 users, we see that at both BSs interference
occupies4M−2N dimensions while signal occupies8M−4N
dimensions, with8N−12M unused dimensions. Note that since
γ ≤ 2/3, 8N − 12M ≥ 0. Letting each user pick2N − 3M
random beamformers, the remaining8N−12M dimensions are
equally split between interference and signal at each of theBSs.
We have thus designedM transmit beamformers for each user
while ensuring that at each BS, interference occupies no more
than (4M − 2N) + 2(2N − 3M) = 2N − 2M dimensions,
resulting inM/2 sDoF/user.

Case iv:2/3 ≤ γ ≤ 1: We need to achieveN/3 DoF/user.
We consider a space-extension factor of three, so that each user
has3M antennas and each BS has3N antennas; and we need to
designN transmit beamformers per user. The two users in the
second cell each have access to a3M dimensional subspace
at the first BS. These two subspaces overlap in6M − 3N
dimensions. Sinceγ > 2/3, we note that6M − 3N > N ,
allowing us to pick a set ofN transmit beamformers such that
interference is aligned at BS 1. Using the same strategy for users
in cell 1, interference and signal together span3N dimensions.
The transmit beamformers can be computed by solving the same
set of equations as given in (40).

Case v:1 < γ < 3/2: In order to achieveM/3 DoF/user, we
consider a space-extension factor of three and designM beam-
formers per user. Since we now have more transmit antennas
than receive antennas, transmit zero-forcing becomes possible.
Each user in cell 2 picks3M−3N linearly independent transmit
beamformers so as to zero-force BS 1, i.e., the beamformers are
chosen from the null space of the channelH(2i,1) and satisfy

H(2i,1)v2ij = 0 ∀ i ∈ {1, 2}, j ∈ {1, 2, . . . (3M − 3N)}.
(41)

We let users in cell 1 use the same strategy. Now, in order
to achieveM DoF/user, we still need to design3N − 2M
transmit beamformers per user. So far, both BSs do not see any
interference and have6M−6N dimensions occupied by signals
from their own users. The remaining9N − 6M dimensions
at each BS need to be split in a2 : 1 ratio between signal
and interference to achieveM DoF/user. To meet this goal, we
choose the remaining3N−2M transmit beamformers for users
in cell 2 such that the interference from these users aligns at BS
1. This is accomplished by solving for the transmit beamformers
using (40) for users in cell 2, and using a similar strategy for
users in cell 1, resulting in(3M − 3N) + (3N − 2M) = M
DoF/user over a space-extension factor of three.

Case vi:3/2 ≤ γ: Assuming a space-extension factor of two,
each user needsN transmit beamformers. The null space of
the channel from a user in cell 2 to BS 1 spans2M − 2N
dimensions and sinceγ > 3/2, 2M − 2N > N . Choosing
N transmit beamformers from such a null space and using the
same strategy for users in cell 1, we see that each BS sees no



interference and hence is able to completely recover signals from
both of its users.

2) Linear Beamforming Strategy for the Two-cell,
Three-Users/Cell Network

We divide the discussion in this section into ten cases, each
corresponding to one of the ten distinct piece-wise linear regions
in Fig. 4. The casesγ < 1/6 and 1/6 ≤ γ ≤ 1/3 and
γ ≥ 4/3 are identical to cases(i), (ii) and(vi) in the previous
section, where either random transmit beamforming or zero-
forcing achieve the optimal DoF. We omit the discussion of
these three cases here.

Case iii: 1
3 < γ < 2

5 : We consider a space extension
factor of two and prove thatM DoF/user are achievable. Since
4M < 2N , a many-to-one type of alignment between multiple
interfering vectors is not possible. However, since6M > 2N ,
it is possible to design a set of three beamformers, one for
each user in a cell, such that the beamformers occupy only
two dimensions at the interfering BS. In particular, to design
beamformers for the three users in cell 2, we solve the following
system of equations

[

H(21,1) H(22,1) H(23,1)

]





v21j

v22j

v23j



 = 0 (42)

Note that this is a system of2N equations in6M unknowns, and
there can be at most6M − 2N linearly independent solutions.
These solutions yield6M−2N sets of three beamformers, with
each set having a packing ratio of3 : 2. While the6M − 2N
solutions to the system of equations are linearly independent,
we need to prove that the6M − 2N beamformers designed for
each user are also linearly independent. In other words, linear
independence of the set of solutions{[v̂T

21j v̂T
22j v̂T

23j ]}6M−2N
j=1

does not immediately imply the linear independence of the set
{v̂2ij}6M−2N

j=1 for all i ∈ {1, 2, 3}. However, we prove through
a contradiction that this is indeed true. Suppose that the set
{[v̂T

21j v̂T
22j v̂T

23j ]}6M−2N
j=1 is linearly independent, but the set

{v̂2ij}6M−2N
j=1 is not, for somei. Without loss of generality, let

i = 1. Then, there exist a set of coefficients{βj} such that

6M−2N
∑

j=1

βj v̂21j = 0 (43)

Let ŵ denote the vector
∑6M−2N

j=1 βj [v̂
T
21j v̂

T
22j v̂

T
23j ]

T . Then,

[

H(21,1) H(22,1) H(23,1)

]

ŵ =0, (44)

⇒
[

H(22,1) H(23,1)

]

ŵ(M + 1 : 3M) =0. (45)

Equation (45) is a system ofN equations and2M unknowns,
and since2M < N , (45) is satisfied only ifŵ(M +1 : 3M) =
0 ⇒ ŵ = 0 ⇒ the set{[v̂T

21j v̂T
22j v̂T

23j ]}6M−2N
j=1 is linearly

dependent, which is a contradiction.
Using the6M − 2N sets of beamformers obtained in this

manner, we note that at each BS, we have18M − 6N dimen-
sions occupied by signal,12M − 4N dimensions occupied by
interference with12N − 30M unoccupied dimensions. We now

pick 2N − 5M random beamformers for each user so as to use
all available dimensions at both the BSs. Since the second set of
beamformers are chosen randomly, they are linearly independent
from the first set of6M − 2N beamformers almost surely. We
have thus ensured each user achievesM DoF using a space
extension factor of two.

Case iv: 25 ≤ γ ≤ 1
2 : In order to achieveN/5 DoF/user, we

consider a space extension factor of five and consider designing
N transmit beamformers per user. Once again,3 : 2 is the
highest possible packing ratio and there are15M − 5N sets of
three beamformers(one for each of three user in a cell) having
this packing ratio. If we are to use all such beamformers, we
can at most cover5(15M − 5N) dimensions at each BS. Since
5(15M − 5N) ≥ 5N , we have sufficient number of such sets
to use all available dimensions at the two BSs. ChoosingN
such sets of beamformers achievesN DoF/user over five space
extensions.

Case v: 1
2 < γ < 5

9 : The goal here is to achieve2M
DoF/user using a space extension factor of five. To keep the
presentation simple, we assumeM andN are divisible by five
and achieve 2M/5 DoF/user. Since2M > N , many-to-one type
of interference alignment becomes feasible and in fact,2 : 1
is the highest possible packing ratio. There are three ways to
choose a pair of users from a cell, and for each pair there exist
2M − N sets of beamformers having a packing ratio of2 : 1.
For users in cell 2, these beamformers can be formed by solving
equations of the form

[H(2i,1)H(2k,1)]

[

v2ij

v2kj

]

= 0, (46)

where i, k ∈ {1, 2, 3}, i 6= k. We thus have2(2M − N)
beamformers per user. Since we assume channels to be generic
and since2(2M−N) < M , the set of2(2M−N) beamformers
are almost surely linearly independent. When these6(2M −N)
beamformers are used in each cell, each BS has4N−6M unused
dimensions. We fill the unused dimensions using beamformers
having the next best packing ratio—3 : 2. In order to ensure the
linear independence of this new set of beamformers from the
set of beamformers already designed, we multiply each channel
matrixH(lm,n) with a matrixWlm on the right, whereWlm is
aM × (2N − 3M) matrix whose columns are orthogonal to the
4M−2N beamformers that have already been designed for user
lm. Let the effective channel matrixH(lm,n)Wlm be denoted by
H̃(lm,n). Note thatH̃(lm,n) is aN×2N−3M matrix and since
3(2N − 3M) > N , there exist beamformers having packing
ratio 3 : 2. Similar to Case iv, we design2N − 18M

5 sets of
such beamformers, ensuring that all dimensions at the two BSs
are used while achieving(2N − 18M

5 ) + 2(2M −N) = 2M/5
DoF/user.

Case vi: 59 ≤ γ ≤ 2
3 : We need to achieve2N DoF/user over

9 spatial extensions. To keep the presentation simple, we simply
assume thatN is divisible by nine and present the arguments
without any spatial extensions. Since2M > N , beamformers
having packing ratios2 : 1 exist. We have3(2M − N) sets
of such beamformers per cell, and using anyN/3 (note that
(N/3) < 3(2M − N)) of them ensures that all dimensions at
both the BSs are occupied by either interference or signal.



Case vii: 2
3 < γ < 3

4 : This case is discussed in detail in
Section IV-A and we only mention the exact equations and
transformations necessary to design the required beamformers.
For users in cell 2, the3M − 2N sets of beamformers having
packing ratio3 : 1 are designed by solving the system of
equations given by

[

H(21,1) H(22,1) 0

0 H(22,1) H(23,1)

]





v21j

v22j

v23j



 = 0. (47)

We use an analogous set of equations for users in cell 1 and
denote the set of beamformers designed in this manner using
the set{v̂ikj}3M−2N

j=1 for all i ∈ {1, 2} and k ∈ {1, 2, 3}.
We then multiply each channel matrixHik,l on the right by
a matrixWik, whereWik is aM × (2N − 2M) matrix whose
columns are orthogonal to the set{v̂ikj}3M−2N

j=1 . Letting the
effective channel matrix be denoted bỹHik,l, we see that we
now have2N−2M effective antennas at each user and the best
possible packing ratio is2 : 1. There exist3(3N − 4M) pairs
of beamformers having a packing ratio of2 : 1, and solving for
any 3N − 4M pairs using equation (46) allows us to achieve
the requisite number of DoF/user.

Case viii: 3
4 ≤ γ ≤ 1. Our goal is to achieveN/4 DoF/user.

We assumeN to be divisible by four and present the arguments
without any explicit reference to spatial extensions. Since3M >
N , packing ratio of3 : 1 is possible and there exists a total of
3M − 2N such sets of beamformers. Designing anyN/4 such
sets through (47) gives us the requisite number of DoF/user.

Case ix: 1 < γ < 4/3 We need to designM/4 DoF/user,
and we assume thatM is a multiple of four. Note that since
M > N , the users can now zero-force the interfering BS. Each
user can designM − N transmit beamformers such that the
interfering BS sees no interference. As before, we then multiply
the channel matricesHik,l by a M × 2N − M matrix Wik

that is orthogonal to theM −N transmit beamformers obtained
from zero-forcing. We now have2N −M effective antennas at
each user and it is easy to see that there exist4N − 3M sets
of transmit beamformers having packing ratio of3 : 1 for such
a system. Designing anyN − 3M

4 sets of such beamformers
through (47) lets us achieveM/4 DoF/user.

REFERENCES

[1] S. A. Jafar and M. J. Fakhereddin, “Degrees of freedom forthe MIMO
interference channel,”IEEE Trans. Inf. Theory, vol. 53, no. 7, pp. 2637–
2642, Jul. 2007.

[2] M. A. Maddah-Ali, A. S. Motahari, and A. K. Khandani, “Communication
over MIMO X channels: Interference alignment, decomposition, and
performance analysis,”IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3457–
3470, 2008.

[3] S. A. Jafar and S. Shamai, “Degrees of freedom region of the MIMO X
channel,”IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 151–170, 2008.

[4] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of
freedom of the K-user interference channel,”IEEE Trans. Inf. Theory,
vol. 54, no. 8, pp. 3425 –3441, Aug. 2008.

[5] C. Suh and D. Tse, “Interference alignment for cellular networks,” inAnnu.
Allerton Conf. Commun., Control, Computing, Sep. 2008, pp. 1037–1044.

[6] V. R. Cadambe and S. A. Jafar, “Interference alignment and the degrees of
freedom of wireless X networks,”IEEE Trans. Inf. Theory, vol. 55, no. 9,
pp. 3893–3908, 2009.

[7] A. S. Motahari, S. O. Gharan, and A. K. Khandani, “Real
interference alignment with real numbers.” [Online]. Available:
http://arxiv.org/abs/0908.1208

[8] C. Wang, H. Sun, and S. A. Jafar, “Genie chains and the degrees of freedom
of the K-user MIMO interference channel,” inIEEE Int. Symp. Inf. Theory,
Jul. 2012, pp. 2476–2480.

[9] H. Sun, C. Geng, T. Gou, and S. A. Jafar, “Degrees of freedom of MIMO
X networks: Spatial scale invariance, one-sided decomposability and linear
feasibility,” in IEEE Int. Symp. Inf. Theory, Jul. 2012, pp. 2082–2086.

[10] C. Suh, M. Ho, and D. N. C. Tse, “Downlink interference alignment,”
IEEE Trans. Commun., vol. 59, no. 9, pp. 2616–2626, Sep. 2011.

[11] T. Gou and S. A. Jafar, “Degrees of freedom of the K user M×N MIMO
interference channel,”IEEE Trans. Inf. Theory, vol. 56, no. 12, pp. 6040–
6057, Dec. 2010.

[12] A. Ghasemi, A. S. Motahari, and A. K. Khandani, “Interference alignment
for the K user MIMO interference channel,” inIEEE Int. Symp. Inf. Theory,
Jun. 2010, pp. 360–364.

[13] C. Wang, T. Gou, and S. A. Jafar, “Subspace alignment chains and
the degrees of freedom of the three-user MIMO interference channel,”
IEEE Trans. Inf. Theory, submitted for publication. [Online]. Available:
http://arxiv.org/abs/1109.4350

[14] C. M. Yetis, T. Gou, S. A. Jafar, and A. H. Kayran, “On feasibility
of interference alignment in MIMO interference networks,”IEEE Trans.
Signal Process., vol. 58, no. 9, pp. 4771–4782, Sep. 2010.

[15] M. Razaviyayn, G. Lyubeznik, and Z.-Q. Luo, “On the degrees of
freedom achievable through interference alignment in a MIMO interference
channel,”IEEE Trans. Signal Process., vol. 60, no. 2, pp. 812 –821, Feb.
2012.

[16] T. Liu and C. Yang, “On the feasibility of interference alignment for MIMO
interference broadcast channels,” 2012.

[17] L. Ruan, V. K. Lau, and M. Z. Win, “The feasibility conditions of
interference alignment for MIMO interference networks,” in IEEE Int.
Symp. Inf. Theory. IEEE, 2012, pp. 2486–2490.

[18] O. Gonzalez, C. Beltrán, and I. Santamarı́a, “On the feasibility of interfer-
ence alignment for the K-user MIMO channel with constant coefficients,”
arXiv preprint arXiv:1202.0186, 2012.

[19] B. Zhuang, R. A. Berry, and M. L. Honig, “Interference alignment in
MIMO cellular networks,” in IEEE Int. Conf. Acoust., Speech Signal
Process., May 2011.

[20] S.-H. Park and I. Lee, “Degrees of freedom for mutually interfering
broadcast channels,”IEEE Trans. Inf. Theory, vol. 58, no. 1, pp. 393–
402, Jan. 2012.

[21] W. Shin, N. Lee, J.-B. Lim, C. Shin, and K. Jang, “On the design of
interference alignment scheme for two-cell MIMO interfering broadcast
channels,”IEEE Trans. Wireless Commun., vol. 10, no. 2, pp. 437 –442,
Feb. 2011.

[22] S. Ayoughi, M. Nasiri-Kenari, and B. Hossein Khalaj, “On degrees of
freedom of the cognitive MIMO two interfering multiple access channels,”
IEEE Trans. Veh. Technol., vol. PP, no. 99, 2013.

[23] K. Lee, “Uplink interference alignment for two-cell MIMO interference
channels,”IEEE Trans. Veh. Technol., vol. PP, no. 99, 2012.

[24] T. Kim, D. J. Love, and B. Clerckx, “On the spatial degrees
of freedom of multicell and multiuser MIMO channels,”IEEE
Trans. Inf. Theory, submitted for publication. [Online]. Available:
http://arxiv.org/abs/1111.3160

[25] T. Liu and C. Yang, “Interference alignment transceiver design for MIMO
interference broadcast channels,” inIEEE Wireless Commun. Netw. Conf.,
Apr. 2012.

[26] Y. Ma, J. Li, R. Chen, and Q. Liu, “On feasibility of interference alignment
for L-cell constant cellular interfering networks,”IEEE Commun. Lett.,
vol. 16, no. 5, pp. 714 –716, May 2012.

[27] T. Liu and C. Yang, “Genie chain and degrees of freedom ofsymmetric
mimo interference broadcast channels,”CoRR, vol. abs/1309.6727, 2013.

[28] R. Tresch, M. Guillaud, and E. Riegler, “On the achievability of inter-
ference alignment in the K-user constant MIMO interferencechannel,” in
IEEE Workshop on Statistical Signal Process., 2009, pp. 277–280.

[29] K. Gomadam, V. R. Cadambe, and S. A. Jafar, “A distributed numerical
approach to interference alignment and applications to wireless interfer-
ence networks,”IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3309–3322,
Jun. 2011.

[30] S. W. Peters and R. W. Heath, “Interference alignment via alternating
minimization,” in IEEE Int. Conf. Acoust., Speech Signal Process., Apr.
2009, pp. 2445–2448.

[31] D. S. Papailiopoulos and A. G. Dimakis, “Interference alignment as a
rank constrained rank minimization,”IEEE Trans. Signal Process., vol. 60,
no. 8, pp. 4278–4288, Aug. 2012.

[32] G. Sridharan and W. Yu, “Interference alignment using reweighted nuclear
norm minimization,” inIEEE Int. Conf. Acoust., Speech Signal Process.

http://arxiv.org/abs/0908.1208
http://arxiv.org/abs/1109.4350
http://arxiv.org/abs/1111.3160


[33] N. Saxena, “Progress on polynomial identity testing.”Bulletin of the
EATCS, vol. 99, pp. 49–79, 2009.

[34] J. T. Schwartz, “Fast probabilistic algorithms for verification of polynomial
identities,” J. ACM, vol. 27, no. 4, pp. 701–717, Oct. 1980. [Online].
Available: http://doi.acm.org/10.1145/322217.322225

[35] R. Zippel, “Probabilistic algorithms for sparse polynomials,” in Symbolic
and Algebraic Computation, ser. Lecture Notes in Computer Science,
E. Ng, Ed. Springer Berlin Heidelberg, 1979, vol. 72, pp. 216–226.
[Online]. Available: http://dx.doi.org/10.1007/3-540-09519-5 73

[36] T. Liu and C. Yang, “Degrees of freedom of general symmetric MIMO
interference broadcast channels,” inIEEE Int. Conf. Acoust., Speech Signal
Process.

[37] D. Schmidt, C. Shi, R. Berry, M. Honig, and W. Utschick, “Comparison
of distributed beamforming algorithms for MIMO interference networks,”
IEEE Trans. Signal Process., vol. 61, no. 13, pp. 3476–3489, 2013.

http://doi.acm.org/10.1145/322217.322225
http://dx.doi.org/10.1007/3-540-09519-5_73

	Introduction
	Literature Review
	Decomposition Based Schemes 
	Linear Beamforming 

	Main Contributions
	Paper Organization
	Notation

	System Model
	Decomposition Based Schemes: Achievable DoF and Conditions for Optimality
	Achievable DoF using decomposition based schemes
	Outer Bounds on the DoF of MIMO Cellular Networks
	Optimality of the DoF Achieved Using Decomposition
	Insights on the Optimal DoF of MIMO Cellular Networks

	Linear Beamforming: Structured and Unstructured Design
	Structured Approach to Linear Beamforming Design
	Main Results
	Achievability of the Optimal sDoF: Packing Ratios

	Extending packing ratios to larger networks
	Unstructured Approach to Linear Beamforming Design
	Unstructured Approach for the MIMO Interference Channel
	USAP-uplink for MIMO Cellular Networks


	Conclusion
	Appendix A: DoF Outer Bound for Two-Cell Three-Users/Cell MIMO Cellular Network When 59 < 34 
	DoF Outer Bound When 5/9 2/3
	DoF Outer Bound when  2/3 3/4


	Appendix B: The Achievability of the Optimal sDoF For The Two-Cell Two-Users/Cell Network and the Two-Cell Three-Users/Cell Network
	Linear Beamforming Strategy for the Two-Cell, Two-Users/Cell Network
	Linear Beamforming Strategy for the Two-cell, Three-Users/Cell Network 


	References

