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Abstract—This paper investigates a scenario where multiple
network service providers (NSPs) compete to provide wireless
connectivity to a set of users. The users could either be a single
mobile device, a set of localized Internet-of-Things (IoT) devices,
or even a campus-wide network requiring wireless backhaul. The
NSPs compete with one another to provide wireless service to
the users by strategically allocating the available bandwidth so
as to maximize their total payoff. The NSPs present each user
with an offer to provide wireless connectivity using a certain
amount of bandwidth. Users then decide to connect to that
NSP whose offered bandwidth maximizes their utility function.
Under such an architecture, this paper focuses on the optimal
bandwidth allocation strategies for the NSPs. Such a problem
is best modeled using a classical problem in game theory called
the Colonel Blotto game—a multidimensional strategic resource
allocation game. We show that the problem of spectrum allocation
can be reframed as a Colonel Blotto game and analyze the
mixed strategies that achieve Nash equilibrium. Depending on
whether spectrum is treated a discrete or a continuous resource,
we take recourse to either existing theoretical results or rely
on numerical techniques to establish the equilibrium-achieving
mixed strategies. We finally discuss interesting aspects about
these mixed strategies, including an intrinsic user-association
mechanism that emerges when spectral efficiency is taken into
consideration.

Keywords—spectrum allocation, noncooperative game theory,
Colonel Blotto game, mixed strategies.

I. INTRODUCTION

Traditional wireless networks operate as parallel, indepen-
dent infrastructures with little to no inter-network coordination
[1]. This can lead to poor utilization of the licensed spectrum,
inability to address load imbalance, and high interference in the
case of unlicensed spectrum. Prime examples of such scenarios
include multiple co-located Wi-Fi hotspots, and cellular net-
works with mismatched data demand and spectrum availability.
To address better usage of licensed and unlicensed spectrum,
several new notions of spectrum usage are being promoted,
including licensed assisted access (LAA) [2], licensed shared
access [3], co-primary sharing [4], etc. While these solutions
are aimed at a more harmonious use of the available spectrum
through coordination and cooperation among the network
service providers (NSPs), better spectrum utilization can also
be realized through competition among the NSPs. Such an
environment can be created by allowing users to choose their
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NSPs on an on-demand basis, without them committing to
monthly subscription plans. NSPs are then required to compete
with one another to provide service to these untethered users
by competitively allocating the available radio resources. While
such a model enables users to choose the best available service
without committing to a single NSP, it also forces the NSPs
to constantly employ all available resources, thus promoting
better spectrum utilization.

As an example of such an architecture, consider the concept
behind Google’s Project Fi [5], where mobile users have
no dedicated NSPs, and instead opportunistically connect to
the cellular service or WiFi hotspot offering them the best
service. Such a setup unlocks spectrum to be used in an
opportunistic manner, with the ancillary benefits of better
interference management and higher spectral efficiency. A key
component in such a system is the competitive bidding by
the multiple NSPs to be chosen as service providers to the
different users in the pool. In such a setting, it is of interest
to analyze the competitive allocation of spectrum by multiple
NSPs among a group of users. Naturally, to analyze such
competitive scenarios, game-theoretic tools [6] are known to
be a suitable framework.

In particular, we consider two NSPs, each with a fixed
amount of non-overlapping bandwidth, competing over a com-
mon pool of users. The users can either be of equal or different
value to the NSPs. Depending on the total available bandwidth
and the value of the user, each user receives an offer of service
from the two NSPs, quantified by the amount of bandwidth the
NSP is willing to support that user with. The user then picks
the offer that maximizes its utility. The NSPs aim to serve as
many users as possible so as to maximize their revenue. This
process is constantly repeated as users move in and out of the
system and when more bandwidth becomes available.

Each NSP must deal with the challenging task of strate-
gically allocating spectrum so as to out-bid the other NSP
while adhering to the constraints on the total available band-
width. The competitive allocation of spectrum by the NSPs is
closely related to the Colonel Blotto game (CBG) [7], [8]—a
multidimensional problem on strategic resource allocation. The
classical CBG is a two-person constant-sum game in which two
players (colonels) are tasked with allocating a limited resource
(troops) over multiple fronts (battlefields), with the player
allocating the most resources to a front being declared the
winner, and the overall payoff being proportional to the number
fronts won. The classical CBG and its variants are known to be



challenging problems due to the complex strategy space. Yet,
recent progress by Roberson [7] has provided valuable insight
on equilibrium-achieving mixed strategies in such problems.
Characterizing equilibrium-achieving mixed strategies of other
variants of the CBG is an active area of research [9], [10].

The main contribution of this paper is to introduce a novel
approach to the inter-network spectrum allocation problem us-
ing the framework of CBG in both the discrete and continuous
domains. In the continuous case, we assume spectrum to be
an infinitely divisible resource and establish parameter settings
under which equilibrium achieving mixed strategies to inter-
network spectrum allocation are known. We then proceed to
consider spectrum as a quantized resource and shift focus
to the discrete CBG. Since the discrete CBG is a 2-player
constant-sum matrix game, we propose a learning algorithm
based on fictitious play [11] to numerically compute the mixed
strategies that achieve Nash equilibrium (NE). We compare
the numerically obtained strategies to those predicted by the
theoretical results in the continuous case and further proceed
to consider parameter settings for which no theoretical results
are available.

The rest of the paper is organized as follows. In Section II,
inter-network spectrum allocation is introduced in a formal set-
ting. Section III discusses important results on the continuous
CBG and adapts them to inter-network spectrum allocation.
Sections IV and V consider spectrum as a quantized resource
and use numerical methods to compute the equilibrium mixed
strategies. Conclusions are drawn in Section VI.

II. INTER-NETWORK SPECTRUM ALLOCATION

Consider two independent NSPs R1 and R2 with non-
overlapping bandwidths W1 and W2, respectively. R1 and R2

compete to provide service to a pool of N users labeled U1,
U2, . . . , UN . We let pi denote the payoff/revenue to the NSP
that is chosen to provide service to user Ui. The two NSPs
strategically divide the available bandwidth Wi among the
pool of N users so as to maximize their payoff. Each user
Ui thus receives a bid of w1i and w2i from the two NSPs,
indicating an intention to provide service using an amount,
wik of bandwidth. Using an estimate of the spectral efficiency
σik that can be achieved when served by NSP Ri, User Uk

chooses the NSP maximizing the total rate achieved, i.e., users
choose the NSP that maximizes σikwik

1. It is assumed that
information regarding the spectral efficiencies is relayed to
both the NSPs. Spectral efficiency for the link between Ri and
Uk is obtained by measuring the signal-to-noise ratio (SNRik)
and setting σik = log(1+ SNRik). If spectral efficiencies are
not estimated, they are assumed to be 1 and such a scenario is
termed SNR-agnostic spectrum allocation. Note that since the
payoff does not incentivize bandwidth conservation, it can be
assumed without loss of generality that all available bandwidth
is used in the bidding process, i.e., the N bids by Ri satisfy
∑N

k=1 wik = Wi. The total payoff to NSP R1 from such a
process, assuming no ties, is given by

c1 =
∑

k:σ1kw1k>σ2kw2k

pk. (1)

1Tie resolution depends on whether bandwidth is treated as a continuous or
a discrete parameter. In the continuous case, ties are always resolved in favor
of NSP R1, while in the discrete case they are resolved using a coin toss.

After this process, the users get served by their NSP of
choice using the promised amount of bandwidth. Since it is
unlikely that all users choose to associate with an NSP, the
unused bandwidth at each NSP is rolled over to the next session
or time slot when the NSPs compete again to serve a new pool
of users. This paper restricts focus to a single instance of such a
bidding process, with the design and behavior of the repetitive
bidding process being of interest in the future. Note that not all
the N bids made by an NSP are likely to be accepted and this
results in some unallocated bandwidth. We assume that this
residual bandwidth is not reassigned as the users have already
agreed to be saved and further, there is an economic incentive
to save this bandwidth for a subsequent bidding session.

For our model, one important consideration is whether or
not bandwidth can be treated as an infinitely divisible resource.
In theory, while it is indeed possible to treat bandwidth as an
infinitely divisible resource, in practice, bandwidth is typically
assigned in certain preset quantized values. This subtle but
important distinction in how this resource is treated leads to
two different problem formulations. Treating bandwidth as an
infinitely divisible resource allows us to take recourse to well-
known results in the context of continuous CBG.

In particular, we view inter-network spectrum allocation
as a strategic game G (N, {Wi}, {σik}, {pk}) between two
non-cooperating NSPs and aim to characterize strategies for
bandwidth allocation that achieve NE. As we note in the
next section, pure strategies, i.e., strategies that allocate a
predetermined amount of bandwidth to each of N users,
achieve NE only under rare circumstances. This turns our
attention to mixed strategies where bandwidth allocation to
the N users is governed by an underlying probability dis-
tribution. Let the set of all possible mixed strategies of
NSP Ri for the game G (N, {Wi}, {σik}, {pk}) be denoted
by Si, where Si consists of all N -variate probability den-
sity functions fi(wi1, wi2, · · · , wiN ) with support ∆i =
{{wik}

N
k=1 :

∑N

k=1 wik = Wi}. Characterizing equilibrium-
achieving mixed strategies for G (N, {Wi}, {σik, {pk}}) re-
quires establishing a pair of N -variate probability density
functions fi(·) ∈ Si and fj ∈ Sj that satisfy

ci
(

f∗
i , f

∗
j

)

≥ ci
(

fi, f
∗
j

)

∀fi ∈ Si, i 6= j, (2)

where ci (fi, fj) denotes the expected payoff to Ri when f∗
i

and f∗
j are chosen as the strategies by Ri and Rj respectively.

Since the game G (N, {Wi}, {σik}, {pk}) is a constant-sum
game with compact pure strategy spaces and has a semicon-
tinuous payoff function, we can apply a result by Dasgupta
and Maskin [12] to establish the following proposition.

Proposition 1: For the spectrum allocation game
G (N, {Wi}, {σik}, {pk}), there always exists a pair of
mixed strategies that achieve the NE.

Since this is a constant-sum game, due to the minimax
theorem [13], it is not necessary to specify optimal strategy
profiles (f∗

1 , f
∗
2 ) as a pair, and instead it suffices to establish

equilibrium-achieving mixed strategies for each individual
NSP which can then be paired in any manner to obtain an
optimal strategy profile (f∗

1 , f
∗
2 ). Optimal mixed strategies

for certain parameter settings of G (N, {Wi}, {σik}, {pk}) are
described in the next section.

From a practical standpoint, it is of interest to also study



the discrete version of the spectrum allocation problem. Al-
though analytical results are difficult to obtain when treating
bandwidth as a quantized resource, such a formulation is
more amenable to well-known numerical techniques such as
fictitious play [11]. Section IV discusses the 2-player constant-
sum matrix game that results when bandwidth is treated as
a quantized resource and numerically computes the optimal
mixed strategies.

III. INTER-NETWORK SPECTRUM ALLOCATION AS A

CONTINUOUS COLONEL BLOTTO GAME

Proposed as early as 1921 by Borel, CBG is one of the best
examples of resource allocation in a competitive environment.
It closely mirrors the spectrum allocation problem that is of
interest here, but is presented in the context of a war between
two colonels over multiple battlefields. The canonical CBG
involves two colonels (players) B1 and B2 engaged in a war
over N battlefields with a total of T1 and T2 troops (assume
T1 ≤ T2) at their disposal. The colonels strategically assign
the available troops among the N battlefields, with the winner
of each battlefield determined to be the colonel assigning
the greater number of troops to that battlefield. Assuming
the kth battlefield to have a payoff of qi, the goal for each
colonel is to assign troops in such a manner that the total
payoff is maximized. Denoting tik as the troops assigned by
Bi to the kth battlefield, the troop assignments must satisfy
∑N

k=1 tik ≤ Ti. CBG is typically studied as a continuous game
with the troops T1 and T2 being treated as infinitely divisible.
This is a constant-sum game and a NE in mixed strategies
exists due to the result by Dasgupta and Maskin [12]. Early
studies on CBG [8] assumed symmetric colonels (T1 = T2)
and symmetric battlefields (qi = qj ∀i, j), a setup called
doubly-symmetric CBG. More recently, CBG with symmetric
colonels but asymmetric battlefields is studied in [14], while
CBG with asymmetric colonels but symmetric battlefields is
studied in [7]. To the best of our knowledge, there are no
known results when both symmetries are broken. While other
variants of the CBG have also been studied, they are not
immediately relevant to the spectrum allocation problem.

The analogy between CBG and inter-network spectrum
allocation is immediate once we note that the NSPs play
the role of colonels, with bandwidth as their constrained
resource (troops), and users serving as the N -battlefields. Thus,
denoting the CBG as B (N, {Ti}, {qi}), it is straightforward to
establish the following proposition.

Proposition 2: When spectral efficiencies {σik} satisfy
σ1k = σ2k ∀k, the inter-network spectrum allocation game
G (N, {Wi}, {σik}, {pk}) is equivalent to the colonel Blotto
game B (N, {Wi}, {pi}).

This equivalence allows us to reframe equilibrium strate-
gies for the CBG in the context of inter-network spectrum allo-
cation. Despite its relatively simple formulation, equilibrium-
achieving mixed strategies for the CBG are only known for
certain parameter settings. Similar to the spectrum allocation
game, a mixed strategy for the CBG is an N -variate den-
sity function with support contained in the set of feasible
allocations of the troops. Typically, characterizing the mixed
strategies that achieve NE is split into two parts, one focused
on specifying the N univariate marginal distributions of the N -
variable equilibrium distribution, and the other on constructing

an N -variate distribution that has the appropriate univariate
marginal distributions.

Proposition 2 is most relevant to a SNR-agnostic spectrum
allocation game where the spectral efficiencies are not im-
mediately available and assumed to be 1. In such a setting,
the results on equilibrium mixed strategies in [7], [14] can be
immediately adapted to establish results of the following form:

Theorem 3 (based on Proposition 1 in [14]): For a spec-
trum allocation game G (N, {Wi}, {σik}, {pk}) that satisfies
(a) W1 = W2 (symmetric colonels), (b) σ1k = σ2k ∀k (SNR-
agnostic) and (c) pk <

∑

j 6=k pj ∀ k (no dominant user),
any N -variate probability density function with support ∆i

where the kth univariate marginal density function is uniformly

distributed on
[

0, 2Wipi∑
pi

]

constitutes an equilibrium-achieving

mixed strategy providing equal payoffs to both the NSPs.

Theorem 4 (based on Theorem 2 in [7]): For a spectrum
allocation game G (N, {Wi}, {σik}, {pk}) that satisfies (a)
2
N

≤ W1

W2
≤ 1 (asymmetric colonels), (b) σ1k = σ2k ∀k

(SNR-agnostic) and (c) pi = pj ∀ i, j (symmetric users),
the equilibrium univariate marginal density functions f1i() and
f2i() are given by

f1i(w1i) ∼ (1− W1

W2
)δ(w1i) +

W1

W2
U([0, 2W2

N
]) (3)

f2i(w2i) ∼ U([0, 2W2

N
]) (4)

where δ(·) denotes the unit impulse function and U(·) denoted
the uniform density function over a specified interval. The
equilibrium payoff to NSP 1 is W1/2W2.

Constructing N -variate distributions that satisfy the above
univariate marginals is non-trivial. Geometric methods of con-
struction are proposed in [8], [14]–[16], while other approaches
are suggested in [7]. For brevity, we omit the exact details.

As an illustration of these results, suppose two NSPs with
10 MHz each compete to serve a set of 5 users, each offering
the same payoff, then according to Theorem 3, the optimal
strategy is to offer each user a bandwidth chosen at random
from 0 to 4 MHz, while satisfying the bandwidth constraint.
Suppose instead, the first NSP only has 5 MHz of bandwidth,
then by Theorem 4, a user is allocated non-zero bandwidth
only 50% of the time. This in effect halves the total number of
users for whom NSP 1 allocates a non-zero bandwidth. Thus,
it can be observed that bandwidth-constrained NSPs tend to
adopt a strategy whereby they only compete over a random
subset of users while bandwidth-rich NSPs tend to spread out
the available bandwidth among all the users in the pool.

Extending these results to incorporate spectral efficiencies
is a challenging problem and requires further research. How-
ever, spectral efficiencies can be naturally factored in when
treating bandwidth as a quantized resource, where we rely on
computational methods to design equilibrium strategies. This
is discussed further in the next section.

IV. INTER-NETWORK SPECTRUM ALLOCATION: THE

DISCRETE CASE

The discrete spectrum allocation game is the same as its
continuous version, except that the total bandwidth is now
specified in terms of the number of orthogonal channels owned
by the NSP and the bandwidth allocation is a nonnegative-
integer vector specifying the number of channels allocated to
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Parameters

N 3

W1 16

W2 16

σ1k [1, 1, 1]

σ2k [1, 1, 1]

pi [4, 4, 4]

Payoffs

c1 6

c2 6

Fig. 1. Optimal mixed strategy marginal distribution in a 2-NSP 3-user inter-network spectrum allocation problem with symmetric bandwidth availability and
equal payoffs across users

the N users in the pool. Due to the integer constraints on
bandwidth allocation, the resulting game is a constant-sum
two-player matrix game with finite number of strategies. Such
a game is known to have NE in mixed strategies, with all such
strategies yielding the same payoff. As before, the equilibrium-
achieving strategies of the two NSPs can be paired in any
manner to obtain an equilibrium strategy profile.

The discrete CBG is an immediate analogue of such a
game and Proposition 2 also applies here. However, due to the
combinatorial nature of the strategy space, the discrete CBG
is not as extensively studied as the continuous CBG. The best
result in this context is by Hart [17], who studied the discrete
CBG with a primary focus on the doubly symmetric case.

Rather than pursuing analytical results, this section focuses
on numerical techniques for computing equilibrium mixed
strategies under general parameter settings. In particular, we
adopt fictitious play [11], a well-known learning algorithm,
to compute the equilibrium mixed strategies. Fictitious play
is a belief based learning rule that is commonly used in the
context of 2-player matrix games. Fictitious play for two player
game simulates a repeated game where the two players play an
action/strategy in each round and try to learn the best strategy
from the cumulative outcome of all the previous rounds.

Let GD (N, {Wi}, {σik}, {pk}) denote the discrete spec-
trum allocation game where Wi, wik ∈ Z

+ ∀i, k. Denote the
set of all possible bandwidth allocations of NSP Ri as Ai =
{ai1, ai2, ..., aiHi

} where the allocation aik represents an N -

integer tuple {wi1, wi2, . . . , wiN} satisfying
∑N

k=1 wik = Wi.

The size of the set Ai, denoted as Hi, is equal to
(

Wi+N−1
Wi

)

.

Fictitious play for the game GD (N, {Wi}, {σik}, {pk})
simulates an iterated spectrum allocation game between the
two NSPs, where after the kth iteration, NSP Ri holds the
belief that its opponent is playing this iterative game using a
stationary (possibly mixed) strategy that is characterized by

the belief vector q
(k)
i =

[

q
(k)
i1 , q

(k)
i2 , . . . , q

(k)
iHi

]

, where q
(k)
il

represents the belief held by NSP Ri, after the kth iteration,
that Rj’s (j 6= i) mixed strategy plays the lth action with

probability q
(k)
il . In every iteration of this game, Ri updates

this belief based on the strategy played by Rj . Thus, if Rj

plays the lth strategy at the (k+1)th iteration, Ri updates the
belief vector as follows:

q
(k+1)
im =

{

k
k+1q

(k)
im + 1

k+1 m = l
k

k+1q
(k)
im m 6= l

(5)

Now, the strategy chosen by Ri at the (k+1)th iteration is
based on its beliefs at the end of the kth iteration. In particular,
Ri chooses the action that maximizes its payoff in response to

a mixed strategy of Rj governed by q
(k)
i , i.e.,

argmax
ail∈Ai

Ci

(

ail,q
(k)
i

)

, (6)

where Ci(·) denotes the expected payoff, i.e., E
ail,q

(k)
i

[ci].

Starting from a random initialization of the belief vectors,
this process is repeated until convergence (Convergence to
a mixed strategy equilibrium is guaranteed in constant sum

games [18]). At convergence, q
(k)
i represents an equilibrium

strategy of Rj .

We use this process to numerically compute the equilib-
rium mixed strategies to the discrete inter-network spectrum
allocation problem under general parameter settings.

V. NUMERICAL RESULTS

We use fictitious play on a network with two NSPs compet-
ing to provide service to three users. We consider four different
parameter settings and highlight the important features of the
resulting equilibrium mixed strategies.

Case (i): This case considers SNR-agnostic spectrum allo-
cation with symmetric NSPs and equal payoffs for all users.
The two NSPs are assumed to have a total of 10 MHz of
bandwidth that can only be assigned in multiples of 1.25 MHz
(16 channels to be assigned). The mixed strategy obtained
for such a scenario is presented in Fig. 1, where it is seen
that the resulting univariate marginals randomly allocate up to
11 channels to a user. Interestingly, the marginal distributions
are not uniform distributions as predicted by theory in the
continuous case [7], [8]. However, the support of the marginal
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Fig. 2. Optimal mixed strategy marginal distribution in a 2-NSP 3-user inter-network spectrum allocation problem with asymmetric bandwidth availability and
equal payoffs across users
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Fig. 3. Optimal mixed strategy marginal distribution in a 2-NSP 3-user inter-network spectrum allocation problem with symmetric bandwidth availability and
unequal payoffs across users

distributions is in line with that predicted by theory (2Wi/N ).
Since all three users are identical from an NSP’s perspective,
the marginal distributions suggest that the NSPs compete to
provide service to all users, with no preference given to any
of them. By symmetry the two NSPs receive equal payoffs.

Case (ii): This case is similar to the previous case, except
that the second NSP is now assumed to have only 12 channels.
It is seen from Fig. 2 that the bandwidth-constrained NSP
now tries to compete only over a random subset of users.
This is inferred by noting that NSP 2 chooses to allocate no
channels to a user i with a probability ≈ 0.5. Interestingly, the
bandwidth-rich NSP is cognizant of this behavior and ensures
that all three users are allocated at least one channel, thus
enabling it to win over users that receive no channel allocations
from NSP 2, while expending the least amount of channels to
win over these users. The resulting payoffs suggest that NSP
2 is likely to serve only one of the three users. These results
are in close agreement with those predicted by Theorem 4 for
the continuous case, except for non-uniformity of the marginal
distributions.

Case (iii): This case uses the same parameters as the first
case, except that the users now have unequal payoffs. It can be
observed from Fig. 3 that the support of the univariate marginal
distributions of the equilibrium mixed strategies is proportional
to the user’s value. With the NSPs having the same amount
of bandwidth at their disposal they compete for all the three
users, with a higher interest in winning over the users with
larger payoffs. Due to the symmetry among the two NSPs, the
net payoff remains equal.

Case (iv): Unlike the previous three cases, this case con-
siders different spectral efficiencies for the user-NSP links,
while offering the same payoff for all the users. As seen in
Fig. 4 the equilibrium mixed strategies allocate more channels
to users with better channel conditions, i.e., higher spectral
efficiency. This can be observed by noting NSP 1 (NSP
2) avoids competing for user 1 (user 3) and prefers to not
allocate any bandwidth to this user with a probability of
0.5. This feature has a clear practical significance—it shows
that such a competitive approach to inter-network spectrum
allocation can also capture the salient aspects of user-base-
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Fig. 4. Optimal mixed strategy marginal distribution in a 2-NSP 3-user inter-network spectrum allocation problem with symmetric bandwidth availability and
equal payoffs across users but with a different spectral efficiency for each link.

station association in traditional networks, thereby contributing
to an increase in the overall throughput across all NSPs.
Interestingly, due to similar match-ups between the differences
in spectral efficiency, the payoffs get equally divided among
the two NSPs.

These results illustrate the broad applicability of fictitious
play to compute equilibrium mixed strategies of the inter-
network spectrum allocation for any set of parameters. The
results further illustrate that the numerically computed strate-
gies are physically meaningful and promote better use of the
available spectrum.

VI. CONCLUSION

This paper considered the problem of spectrum allocation
in a network architecture where users are free to choose their
network service providers (NSPs) in an opportunistic manner.
The NSPs are assumed to compete over a common pool
of users by competitively allocating the available bandwidth.
Spectrum allocation in such a setup is shown to be closely
related to the Colonel Blotto game—a multidimensional re-
source allocation problem that is well studied in game theory.
We cast the inter-network spectrum allocation problem as a
CBG and studied it in the case of discrete as well as continuous
spectrum (bandwidth) allocation. For the continuous case, we
adapted the existing theoretical results for CBG, while a com-
putational approach using fictitious play is used to numerically
compute equilibrium mixed strategies in the discrete case.
The resulting strategies were analyzed and shown to promote
better utilization of available resources across the networks. In
summary, the CBG is shown to provide a valuable framework
to study competitive spectrum allocation and warrants further
investigation.
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