Research Is Just Plain Curiosity (with a dab of math)

Christopher Rose Rutgers University, WINLAB

Northern NJ Junior Science and Humanities Symposium March 19, 2012

Pecking Order

BUSINESS: Master of the Universe

WINLAB

1

Northern NJ Junior Science and Humanities Symposium

C. Rose

Research

2

Insult to injury

Conversation Starter Fail:

Insult to injury

Conversation Starter Fail:

"Hey! I'm a Researcher!"

WINLAB

Northern NJ Junior Science and Humanities Symposium

C. Rose

Physicist

Physicist

$$E = h\nu$$

$$E = mc^2$$

Physicist

$$E = h\nu$$

$$E = mc^2$$

Communication/Computer Scientist

Communication/Computer Scientist

$$W \log\left(1 + \frac{P}{N_0 W}\right) \qquad L = \lambda \tau$$

Communication/Computer Scientist

$$W \log \left(1 + \frac{P}{N_0 W}\right) \qquad L = \lambda \tau$$

Insult to injury

• Bluetooth World Domination

- Bluetooth World Domination
- Ant(ennas)s in Your Pants: WiFi hotspot finder

- Bluetooth World Domination
- Ant(ennas)s in Your Pants: WiFi hotspot finder
- Kinect Personal Coach

- Bluetooth World Domination
- Ant(ennas)s in Your Pants: WiFi hotspot finder
- Kinect Personal Coach
- Refrigulator

- Bluetooth World Domination
- Ant(ennas)s in Your Pants: WiFi hotspot finder
- Kinect Personal Coach
- Refrigulator
- Electromyographic "Telepathy"

• Pass out these sheets

7

- Pass out these sheets
- You'll have a number.

- Pass out these sheets
- You'll have a number.
- Have text? You're a talker (transmitter).

- Pass out these sheets
- You'll have a number.
- Have text? You're a talker (transmitter).
- Only a number? You're a listener (receiver).

- Pass out these sheets
- You'll have a number.
- Have text? You're a talker (transmitter).
- Only a number? You're a listener (receiver).
- Senders identify your receivers.

- Pass out these sheets
- You'll have a number.
- Have text? You're a talker (transmitter).
- Only a number? You're a listener (receiver).
- Senders identify your receivers.
- You have 15 seconds to convey your messages.
- Ready, set ...

7

- Pass out these sheets
- You'll have a number.
- Have text? You're a talker (transmitter).
- Only a number? You're a listener (receiver).
- Senders identify your receivers.
- You have 15 seconds to convey your messages.
- Ready, set ... GO!!!

• Shuffle sheets around a bit.

- Shuffle sheets around a bit.
- Have text? You're a talker (transmitter).

- Shuffle sheets around a bit.
- Have text? You're a talker (transmitter).
- Only a number? You're a listener (receiver).

- Shuffle sheets around a bit.
- Have text? You're a talker (transmitter).
- Only a number? You're a listener (receiver).
- Senders identify your receivers.

- Shuffle sheets around a bit.
- Have text? You're a talker (transmitter).
- Only a number? You're a listener (receiver).
- Senders identify your receivers.
- Transmitters: walk over to your receiver.

- Shuffle sheets around a bit.
- Have text? You're a talker (transmitter).
- Only a number? You're a listener (receiver).
- Senders identify your receivers.
- Transmitters: walk over to your receiver.
- Ready, set ...

- Shuffle sheets around a bit.
- Have text? You're a talker (transmitter).
- Only a number? You're a listener (receiver).
- Senders identify your receivers.
- Transmitters: walk over to your receiver.
- Ready, set ... GO!!!

• Transmitters: ball up your paper.

- Transmitters: ball up your paper.
- Receivers: get ready to catch the ball.
Personal Wireless III

- Transmitters: ball up your paper.
- Receivers: get ready to catch the ball.
- Ready, set ...

Personal Wireless III

- Transmitters: ball up your paper.
- Receivers: get ready to catch the ball.
- Ready, set ...GO!!!

So, GO POSTAL!

Forget Radio! Write message down! Toss it to recipient!

So, GO POSTAL!

Forget Radio! Write message down! Toss it to recipient!

COMPLETELY RIDICULOUS, RIGHT??!!

Look More Closely At What We Think We Know

A truck filled with storage media, driven across town, is a very reliable high bit rate channel.

-Comm. Theory Collective Subconscious

A Little Analytic Rigor

A Little Analytic Rigor

A Little Analytic Rigor

WINLAB

Northern NJ Junior Science and Humanities Symposium

Radiation to Transport Energy Ratio

$$\Omega \equiv \frac{E_r}{E_w}$$

Г

Radiation to Transport Energy Ratio

$$\Omega \equiv \frac{E_r}{E_w}$$

 $\begin{array}{l} \text{Receiver Noise} \equiv N_0 \text{ Joules/Hz} \\ \text{Mass Information Density} \equiv \tilde{\rho} \text{ bits/kg} \\ \text{Velocity Ratio} \equiv \delta = \frac{c}{v} \end{array}$

Radiation to Transport Energy Ratio

$$\Omega \equiv \frac{E_r}{E_w}$$

Receiver Noise $\equiv N_0$ Joules/Hz Mass Information Density $\equiv \tilde{\rho}$ bits/kg Velocity Ratio $\equiv \delta = \frac{c}{v}$ Normalized Aperture $\equiv \mathcal{A} = \frac{2R}{\lambda}$ Normalized Distance $\equiv \mathcal{D} = \frac{D}{2R}$

$$\Rightarrow \boxed{\Omega \ge \left[\frac{\tilde{\rho}N_0}{c^2}\right] \left[\frac{8}{\pi^2} \left(\frac{\mathcal{D}}{\mathcal{A}}\right)^2\right] (2\ln 2)\delta^2} \leqslant$$

Equal Receiver/Transmitter Apertures

How About Black Holes?

How About Black Holes?

- Schwarzschild Radius: $r = 2GM/c^2 = 1.5X10^{-27}M$
- Info content goes as event horizon *surface area*: $10^{72}r^2$ bits

$$\tilde{
ho} = 1.5 imes 10^{45} r$$
 bits/kg

How About Black Holes?

- Schwarzschild Radius: $r = 2GM/c^2 = 1.5X10^{-27}M$
- Info content goes as event horizon *surface area*: $10^{72}r^2$ bits

$$\tilde{
ho} = 1.5 imes 10^{45} r$$
 bits/kg

• Microhole (1 μ m radius): 1.5×10^{39} bits/kg

How About Black Holes?

- Schwarzschild Radius: $r = 2GM/c^2 = 1.5X10^{-27}M$
- Info content goes as event horizon *surface area*: $10^{72}r^2$ bits

$$\tilde{
ho} = 1.5 imes 10^{45} r$$
 bits/kg

- Microhole (1 μ m radius): 1.5×10^{39} bits/kg
- Donut-hole sized hole (1cm radius): 1.5×10^{43} bits/kg

How About Black Holes?

- Schwarzschild Radius: $r = 2GM/c^2 = 1.5X10^{-27}M$
- Info content goes as event horizon *surface area*: $10^{72}r^2$ bits

$$\tilde{
ho} = 1.5 imes 10^{45} r$$
 bits/kg

- Microhole (1 μ m radius): 1.5×10^{39} bits/kg
- Donut-hole sized hole (1cm radius): 1.5×10^{43} bits/kg

VERY antisocial!

Empirical Mass Information Densities I

Voyager Spacecraft: 10⁶ bits/kg

15

WINLAB

Northern NJ Junior Science and Humanities Symposium

Empirical Mass Information Densities II

- 20 lb paper @ 1000dpi: 2×10^{10} bits/kg
- DVD: 3×10^{12} bits/kg
- Magnetic Storage with FeO₂: 2×10^{17} bits/kg
- Optical Lithography with SiO₂: 3.85×10^{18} bits/kg
- E-beam Lithography with SiO $_2: 1.54 \times 10^{21}$ bits/kg
- STM with Xe on Ni: 1.74×10^{22} bits/kg
- RNA: 3.6×10^{24} bits/kg
- Li + Be: 7.5×10^{25} bits/kg

Write or Radiate?

Radiation vs. Inscribed Matter

17

WINLAB

Northern NJ Junior Science and Humanities Symposium

WINLAB

Communications Theory Has Spoken

If delay can be tolerated, inscribed matter is *stunningly* more energy-efficient than radiation

A Funny Example

Annals of Improbable Research 11(4), 2005

Northern NJ Junior Science and Humanities Symposium

Write or Radiate?

hey, Hey HEY!!!! What About ... ?

Write or Radiate?

hey, Hey HEY!!!!! What About ... ?

Radiation Penalty

- Impermanence and Repetition
- Localizability

Matter Penalties

- Preservation
- Broadcast
- Inscription Energy
- Deceleration @Target
- Navigation
- Advertisement

Message Advertisement?

Solar Space is BIG

WINLAB

Northern NJ Junior Science and Humanities Symposium

Big Rock?

Big Rock?

Somewhat antisocial

Northern NJ Junior Science and Humanities Symposium

Odd Rock?

WINLAB

Write or Radiate?

Seeded Comet?

WINLAB

Northern NJ Junior Science and Humanities Symposium

Active Probe?

WINLAB

Northern NJ Junior Science and Humanities Symposium

Micro Ark?

Are we there yet!?!?

Northern NJ Junior Science and Humanities Symposium

Write or Radiate?

CONCLUSION

IF: energy important & delay tolerable THEN: inscribed matter messaging is efficient

CONCLUSION

IF: energy important & delay tolerable THEN: inscribed matter messaging is efficient

- Terrestrial
 - FedEx, Netflix, Snail Mail (literally!)
- Chip-to-chip or mote-to-mote
 - smart dust tossing inscribed dust
- Biological systems
 - construction/dispersal cost for messenger molecules

CONCLUSION

IF: energy important & delay tolerable THEN: inscribed matter messaging is efficient

- Terrestrial
 - FedEx, Netflix, Snail Mail (literally!)
- Chip-to-chip or mote-to-mote
 - smart dust tossing inscribed dust
- Biological systems
 - construction/dispersal cost for messenger molecules

But perhaps most important ...
Great Conversation Starter!

WINLAB

Northern NJ Junior Science and Humanities Symposium

C. Rose

Write or Radiate?

RESEARCHER

WINLAB

Northern NJ Junior Science and Humanities Symposium

C. Rose

Learn More

Nature 431, pp.47–49, September 2, 2004 **Web Site:** http://www.winlab.rutgers.edu/~crose/cgi-bin/cosmicP.html

WINLAB

Northern NJ Junior Science and Humanities Symposium

C. Rose