
Processes

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

2Rutgers University CS 416: Operating Systems

Von Neuman Model

Both text (program) and data reside in memory

Execution cycle

Fetch instruction

Decode instruction

Execute instruction
CPU

Memory

3Rutgers University CS 416: Operating Systems

Image of Executing Program

PC: 100

CPU

100 mov (R1), R2

104 add R1,4,R1

108 Mov (R1), R3

112 add R2,R3,R3

Memory

2000 4

2004 8

R1: 2000

R2:

R3:

4Rutgers University CS 416: Operating Systems

Higher-Level Languages

How to map a program like

this to a Von Neuman

machine?

Where to keep yv, nv?

What about foo_obj and tyv?

How to do foo_obj->cheat()?

public class foo {

static private int yv = 0;

static private int nv = 0;

public static void main() {

foo foo_obj = new foo;

foo_obj->cheat();

}

public cheat() {

int tyv = yv;

yv = yv + 1;

if (tyv < 10) {

cheat();

}

}

}

5Rutgers University CS 416: Operating Systems

Run Time Storage Organization

Each variable must be assigned a storage class

Global (static) variables

Allocated in globals region at compile-time

Method local variables and parameters

Allocate dynamically on stack

Dynamically created objects (using new)

Allocate from heap

Objects live beyond invocation of a method

Garbage collected when no longer “live”

Pointer to next instruction to be executed kept
in special register called PC

Variables also cached in registers

Code

Globals

Stack

Heap

Memory

6Rutgers University CS 416: Operating Systems

Process

Process = system abstraction for the set of resources required for

executing a program

= a running instance of a program

= memory image + registers’ content (+ I/O state)

The stack + registers’ content represent the execution context or

thread of control

7Rutgers University CS 416: Operating Systems

What About The OS?

Recall that one of the function of an OS is to provide a virtual

machine interface that makes programming the machine easier

So, a process memory image must also contain the OS

OS

Code

Globals

Stack

Heap

Memory
Code

Globals

Stack

Heap

OS data space is used to store things

like file descriptors for files being

accessed by the process, status of I/O

devices, etc.

8Rutgers University CS 416: Operating Systems

What Happens When There Are More Than One

Running Process?

OS

Code

Globals

Stack

Heap

P0

P1

P2

9Rutgers University CS 416: Operating Systems

Process Control Block

Each process has per-process state maintained by the OS

Identification: process, parent process, user, group, etc.

Execution contexts: threads

Address space: virtual memory

I/O state: file handles (file system), communication endpoints (network),

etc.

Accounting information

For each process, this state is maintained in a process control

block (PCB)

This is just data in the OS data space

Think of it as objects of a class

10

Process Control Block

Rutgers University CS 416: Operating Systems

11

Process States

Rutgers University CS 416: Operating Systems

12

Switching Between Processes

Rutgers University CS 416: Operating Systems

13Rutgers University CS 416: Operating Systems

Ready Queue And Various I/O Device Queues

14Rutgers University CS 416: Operating Systems

Process Creation

How to create a process? System call.

In UNIX, a process can create another process using the fork() system call

int pid = fork(); /* this is in C */

The creating process is called the parent and the new process is called the

child

The child process is created as a copy of the parent process (process image

and process control structure) except for the identification and scheduling state

Parent and child processes run in two different address spaces

By default, there’s no memory sharing

Process creation is expensive because of this copying

The exec() call is provided for the newly created process to run a different

program than that of the parent

15Rutgers University CS 416: Operating Systems

Process Creation

fork()

fork() code

exec()

PCBs

16Rutgers University CS 416: Operating Systems

Example of Process Creation Using Fork

The UNIX shell is command-line interpreter whose basic purpose is for user

to run applications on a UNIX system

cmd arg1 arg2 ... argn

17Rutgers University CS 416: Operating Systems

Process Death (or Murder)

One process can wait for another process to finish using the

wait() system call

Can wait for a child to finish as shown in the example

Can also wait for an arbitrary process if know its PID

Can kill another process using the kill() system call

What all happens when kill() is invoked?

What if the victim process doesn’t want to die?

18Rutgers University CS 416: Operating Systems

A Tree of Processes On A Typical UNIX System

19Rutgers University CS 416: Operating Systems

Signals

User program can invoke OS services by using system calls

What if the program wants the OS to notify it asynchronously
when some event occurs?

Signals

UNIX mechanism for OS to notify a user program when an event of
interest occurs

Potentially interesting events are predefined: e.g., segmentation violation,
message arrival, kill, etc.

When interested in “handling” a particular event (signal), a process
indicates its interest to the OS and gives the OS a procedure that should
be invoked in the upcall

How does a process “indicate” its interest in handling a signal?

20Rutgers University CS 416: Operating Systems

Signals (Cont’d)

When an event of interest occurs:

The kernel handles the event first, then

modifies the process’s stack to look as if the

process’s code made a procedure call to the

signal handler.

Puts an activation record on the user-

level stack corresponding to the event

handler

When the user process is scheduled next it

executes the handler first

From the handler the user process returns to

where it was when the event occurred

A

B

A

B

Handler

21Rutgers University CS 416: Operating Systems

Process: Summary

An “instantiation” of a program

System abstraction: the set of resources required for executing a program

Execution context(s)

Address space

File handles, communication endpoints, etc.

Historically, all of the above “lumped” into a single abstraction

More recently, split into several abstractions

Threads, address space, protection domain, etc.

OS process management:

Supports user creation of processes and interprocess communication (IPC)

Allocates resources to processes according to specific policies

Interleaves the execution of multiple processes to increase system utilization

