

1. MOBILE OPTICAL COMMUNICATION

Conventional approaches are impractical

- highly directional communication
- a few tens of meters of range limited power and high background noise
- mechanically steering transmitter and/or receiver is very costly
- single photodiode receiver is the convention primarily limited to static settings

• Optical array transmitters & receivers can help

Optical Array transmitter + Camera receiver \rightarrow VISUAL MIMO!

WINLAB

Mobile Optical Networks through Visual MIMO Ashwin Ashok, Michael Varga, Jayant Silva, Marco Gruteser, Narayan Mandayam, Kristin Dana

Light Emitting Arrays and Cameras are ubiquitous these days !

3. INTERESTING TRADE-OFF

array structures can help tolerate mobility and achieve good signal quality by reducing noise "interference free"

cameras are limited in sampling rates i.e. frame-rates

Distance between Tx and Rx (in meters)

Shannon Capacity of a single LED transmitter Photodiode v/s Camera receiver

6. REFERENCES

Ashwin Ashok, Marco Gruteser, Narayan Mandayam, Jayant Silva, Michael Varga, and Kristin Dana. **Challenge: Mobile optical networks through visual MIMO.** In *Proceedings of the sixteenth annual international* conference on Mobile computing and networking (MobiCom '10). ACM, New York, NY, USA, 105-112

4. NOVEL CHALLENGES

• Vision based PHY layer

- Vision based acquisition and tracking
- Modulation and coding techniques to address perspective distortion, partial occlusions, embedding in visual imagery

Spatially aware LINK & MAC layer

•revisit ARQ, Error detection, Rate Adaptation protocols

- free for all access with inherent "Interference cancellation"
- SDMA for partial occlusions

•Network Layer

- Relaying and routing for interference free channels
- Visual localization
- New energy tradeoffs complex receiver processing

