On the Delay to Reliably Detect Channel Availability in Cooperative Vehicular Environments

WINLAB Fall 2010 Research Review **Dusan Borota**

dborota@winlab.rutgers.edu

Overview

- Motivation
- System overview
- Single sensor performance
- Cooperative sensing performance
 - AWGN only
 - Vehicular environment

Why sensing in vehicular networks?

- In licensed band:
 - To help deal with network congestion
 - To help ensure meeting QoS requirements
- □ In unlicensed band:
 - To enable usage of bands like TV white space

Sensing for dealing with congestion and QoS

- Increased number of users and applications may cause congestion even with coordination/CSMA/CA
- Users aware of free spectrum may move to other band(s)

Single Sensor Performance

- Energy detector
- □ Performance depends on:
 - Received signal level
 - Observation time
 - Observed bandwidth
 - Ability to accurately determine noise level

Cooperative Sensing

- Hard fusion sensors deliver sensing decisions logical Kout-of-M fusion
- Soft fusion sensors deliver measured value Equal gain combining (EGC)
- □ Performance depends on:
 - Selected fusion technique

Cooperative sensing in AWGN

■ Hard fusion:

EGC fusion:

Vehicular channel

□ Pathloss model [Cheng et al, 2007]:

$$P_{d} = \begin{cases} P(d_{0}) - 10\gamma_{1}log_{10}(\frac{d}{d_{0}}) + X_{\sigma_{1}} & if d_{0} \leq d \leq d_{c} \\ P(d_{0}) - 10\gamma_{1}log_{10}(\frac{d_{c}}{d_{0}}) - & if d \geq d_{c} \\ -10\gamma_{2}log_{10}(\frac{d}{d_{c}}) + X_{\sigma_{2}} \end{cases}$$

$$d_c = 100m$$
 $\gamma_1 = 2.1$ $\sigma_1 = 2.6dB$ $\gamma_2 = 3.8$ $\sigma_2 = 4.4dB$

Nakagami fading parameter dependant on distance

Distance bin [m]	μ
From 0.0 to 5.5	4.07
From 5.5 to 13.9	2.44
From 13.9 to 35.5	3.08
From 35.5 to 90.5	1.52
From 90.5 to 230.7	0.74
From 230.7 to 588.0	0.84
	_

RUTGERS

VINLAB

Infrastructure to Vehicle (I2V)

- All sensors have similar average SNR
- Favors EGC

Vehicle to Vehicle (V2V)

- Sensor # 1 with highest average SNR
- Favors OR fusion

Conclusions

- Goal: how to balance need for fast and reliable sensing
- Single sensor:
 - Larger bandwidth sensing introduces more delay
- Cooperative sensing in vehicular scenarios:
 - I2V scenario favors soft decision combining
 - V2V scenario gains the most when the OR hard fusion rule
 - OR rule is good alternative to EGC

Q&A

Thank you!

