Secret Communication via Multi-antenna Systems

Zang Li Wade Trappe Roy Yates

WINLAB, Rutgers University

Outline

- Information theory background on information security
- Problem formulation for multiple antenna system
- Solution for a multiple-input-single-output (MISO) system
- Numerical evaluation
- Conclusion

Introduction

- Information theoretic secret communication over wireless medium in presence of a passive eavesdropper
 - Eavesdropper is no better than random guessing the secret message
- The noisy nature of the wireless medium can be exploited to achieve information theoretic communication
- Multi-antenna system: the extra degrees of freedom facilitates secret communication

Scenario

- Wireless broadcast channel
- Passive eavesdropper
- Can Alice talk to Bob secretly? If yes, what is the secrecy rate?

Information Secure Secret Communication

- Reliable transmission requirement
- Perfect secrecy requirement
- Secrecy capacity: maximum reliable rate with perfect secrecy
 - This rate might be very small, but we only need it to setup the key for subsequent communication

Wiretap Channel

Wiretap channel (Wyner75)

Broadcast Channel

Broadcast channel (Csiszar & Korner 78)

$$C_{\text{seec}} = \max_{X \to XZ \to YZ} (X(X;Y;Y) + (XX;ZZ))$$

When does V = X?

- More capable condition (Csiszar & Korner 78):
 - $-I(X; Y) I(X; Z) \ge 0$ for all input x
- Bob's channel is more capable ⇒ V = X
 - Wiretap channel satisfies the more capable condition
 - Gaussian broadcast channel (when Bob's SNR > Eve's SNR)
 - Leung-Yan-Cheong & Hellman 1978
- Still a mystery in many other scenarios

Recent Work on Wireless PHY Secrecy

- Mitrpant, Vinck, Luo [ISIT 06] Wiretap with noncausal CSI
- Barros & Rodrigues [ISIT 06] Outage in Rayleigh Fading
- Liang & Poor [Allerton 06] Ergodic Secrecy Capacity in Flat Fading
- Li, Yates, Trappe [Allerton 06] Parallel Channels
- Gopala, Lai, H. El Gamal [ITA 07] Slow Fading
- Khisti, Tchamkerten and Wornell [IT] Secure broadcasting
- Relay channel, multiple access channel, interference channel...
- Multi-antenna system: Hero 03, Negi et. al. 03, Xiaohua Li et. al. 03,
 Parada & Blahut 05 ...

Problem Formulation

Multi-antenna system provides gains in both communication rate and error performance. Can multiple antennas facilitate secret communication?

What is the secrecy capacity for this system?

Why is the Problem Hard?

Capacity
$$C_{\text{sec}} = \max_{V \to X \to YZ} I(V;Y) - I(V;Z)$$

Issues:

Preprocessing V→X?

Optimal Input V?

More capable condition is not satisfied!

Simplification: Achievable Secrecy Rate

- Take V=X to obtain a secrecy rate lower bound
 - Achievable Rate: $R = max_X I(X;Y) I(X;Z)$
- Assume H & G are known to all parties
- How to maximize the rate over the distribution of X?
 - Gaussian input characterized by covariance matrix Q

max
$$\log \det(I_r + HQH^{\dagger}) - \log \det(I_r + GQG^{\dagger})$$

s.t. $\operatorname{tr}(Q) \leq P, \ Q \succeq 0, \ Q = Q^{\dagger},$

Gaussian MISO: M TX antennas, 1 RX antenna/user

Alice
$$Y = h^TX + W_1$$
 $h = [h_1 \cdots h_M]^T$

$$X = [X_1 \cdots X_M]^T$$

$$Z = g^TX + W_2$$
 $g = [g_1 \cdots g_M]^T$

Now the outputs are scalars!

Coordinate rotation can simplify the expressions without changing the system properties

Coordinate Transform

$$Y = h^T X + W_1$$

$$Z = g^T X + W_2$$

Useless to put power in the space orthogonal to h & g

$$\alpha = \frac{g^T h}{\parallel g \parallel \cdot \parallel h \parallel}$$

Jamming View of the MISO Problem

- X₁ is signal for Bob, with power P₁
- X₂ is jamming signal to annoy Eve, with power P₂
- Similar to correlated jamming [Medard 97], [Shafiee+Ulukus 05]
 - except X₁ and X₂ are designed and transmitted by TX,
 - $-P_1+P_2 \le P$
- Questions:
 - How to signal?
 - How to allocate power between X₁ and X₂?

Gaussian MISO with Gaussian Input

$$Y = \|h\| X_1 + W_1$$

$$Z = \|g\| \alpha X_1 + \|g\| \sqrt{1 - \alpha^2} X_2 + W_2$$

- X₂ should be linear to X₁ for cancellation at Eve
- When P₁ is small, we should zero force Eve
 - Choose

$$X_2 = \frac{-\alpha}{\sqrt{1 - \alpha^2}} X_1$$

- Eve receives $Z = W_2$ ⇒ pure noise
- $R_{ZF} = I(X; Y) = log (1+||h||^2P_1)$
- For zero-forcing to be possible, $P_1 \cdot P^* = (1 \alpha^2)P$

Gaussian MISO with Gaussian Input

$$Y = \|h\| X_1 + W_1$$

$$Z = \|g\| \alpha X_1 + \|g\| \sqrt{1 - \alpha^2} X_2 + W_2$$

- Largest rate obtained by zero-forcing:
 - $-R_{7F}^* = \log (1+||h||^2P^*)$
- But this is not optimal!
 - Very conservative, same rate regardless of Eve's channel gain
- For $P_1 > P^*$, choose $X_2 = -c\alpha X_1$ and $P_2 = P P_1$ to cancel X_1 as

much as possible

- Rs(P₁) = I(X; Y) - I(X; Z) = log
$$\frac{\|h\|^2 P_1 + 1}{\|g\|^2 \left(\sqrt{\alpha^2 P_1} - \sqrt{(1 - \alpha^2)(P - P_1)}\right)^2 + 1}$$

Secrecy Rate $R_S(P_1)$ $\alpha = 0.7$, P = 10, ||h|| = 1.

$$R_{s}^{*} = \max_{P^{*} \leq P_{1} \leq P} \log \left(\frac{\|h\|^{2} P_{1} + 1}{\|g\|^{2} \left(\sqrt{\alpha^{2} P_{1}} - \sqrt{(1 - \alpha^{2})(P - P_{1})} \right)^{2} + 1} \right)$$

Optimal Secrecy Rate R_s*

P = 10, ||h|| = 1

Conclusions

- The extra dimensions provided by multi-antenna system can enhance the secrecy rate
- Derived the secrecy rate for MISO Gaussian broadcast channel
 - Coordinate transform
 - Partial cancellation at Eve
 - This rate was shown to be the capacity recently (Khisti et al ISIT2007)

Thanks! Any Questions?

Coding Procedure

Stochastic encoding, joint typical decoding (Csiszar&Korner 78)

$$X^n = f(V^n)$$

To ensure correct decoding at Bob

(Bob finds only one typical sequence in the whole table.)

$$R + R' < I(V;Y)$$

To ensure full equivocation at Eve

(Eve finds at least one typical sequence in every column.)

