PROSE: <u>Providing Robustness in</u> <u>Systems of Embedded Sensors</u>

Yanyong Zhang, Shengchao Yu, Jaewon Kang, Badri Nath, Wade Trappe

WINLAB, Rutgers University

1

Sensor Network Model

- Sensor net connectivity model
 - Multi-hop networking
 - More active nodes may be needed

- A sensor net deployment has:
 - Many inexpensive sensor nodes
 - capable of sensing, computing, and communication
 - Resource constraints (energy)
 - Deployment redundancy
 - Stationary nodes
 - One or several data sinks
 - Connected with apps

Sensor net coverage model:

- Lifetime vs. coverage
 - a minimum set of active nodes
- Grid-based coverage model
 - Network partitioned into grids
 - A node is able to monitor at least one grid point
 - Every grid point must be monitored

Challenges in Sensor Networks

How to extract a steady stream of valid data from all the interesting spots in the presence of unexpected interrupts? Many challenges in building sensor systems/applications (at WINLAB)

- Sensor deployment
- Lifetime maximization
- Programming model
- Routing and MAC protocols
- Localization algorithms
- Security and privacy

This project focuses on robust sensor services

- Unattended operations
- Hostile environment
 - Fire
 - Iandfill
- Many unexpected events may happen
 - Node failure
 - Congestion
 - Erroneous data

Prose Overview

Robust Sensor Services

Network Exceptions

PROSE has three components:

- <u>DADA</u>: a 2-Dimensional Adaptive Node Scheduling Framework
 - Provides data availability against random node failures
 - Repairs network coverage and connectivity by cleverly waking up redundant nodes upon node failures
- <u>TARA</u>: a Topology-Aware Resource
 Adaptation Framework
 - Provides data availability against congestion
 - Brings more sensor nodes "online" to accommodate higher traffic rate to eliminate congestion
- <u>MARA</u>: a Measurement Assurance and Robust Aggregation Framework
 - Provides data assurance
 - Classifies and cleanses sensed data
- Each component has two units:
 - Exception detection
 - Exception handling

DADA: Overview

wake up schedule for A'

- DADA balances the tradeoff between network lifetime and network quality
- DADA achieves two goals:
 - Bounded recovery time upon node failures (recovery time <= δ)
 - Minimize energy consumption
- Basic idea for DADA
 - A minimum set of active nodes
 - The redundant node wakes up every $\boldsymbol{\delta}$ time
 - When it wakes up, it finds out whether it needs to become active
 - If the active node dies at time t, its redundant node will wake up at latest t+ δ to, and will become active
- Complications
 - How to decide an active node's redundant nodes?
 - How to schedule multiple redundant nodes?

DADA: Gangs

- A node can not always replaced by one redundant node
 - On average, 3-5 nodes are needed to replace a node's sensing area
 - One node may not be enough to repair the communication hole even if it is in the radio range
- The concept of "gangs"
 - A <u>gang</u> consists of a group of nodes that can completely replace an active node
 - A <u>minimum gang</u> is a gang itself, but none of its subsets is a gang
 - All the nodes belong to a minimum gang should wake up together
 - The minimum gangs are analogous to "sentries" in real life.

DADA: P-Sentry Algorithm

- Persistent Sentry (P-Sentry) provides interrupt-less network operations
 - One minimum gang stays awake all the time (the sentry)
 - The sentries can take over when the active node fails
 - The other redundant nodes can sleep for a much longer time
- Issues with P-Sentry algorithm
 - How do the sentries detect the failure of the active node?
 - Passive listening
 - Active probing
 - Which nodes should be chosen as sentries?
 - Energy
 - Functionality
 - Redundancy
 - How long should the non-sentry redundant nodes sleep?
 - Estimate the remaining lifetime
 - Considering the random failure rate
 - How to synchronize multiple schedules a redundant node may have?
 - Active node maintains states

DADA: R-Sentry Algorithm

- Rotary sentries (R-Sentry) limits service loss
 - All the minimum gangs take turns to wake up, with δ between two subsequent wakeups.
- An example scenario
 - A's minimum gangs {H,I,C}, {H,I,G,E}, {B,D,C}, {B,E,G}, {E,F,G}, and {H,D,C}
- Issues to be considered
 - How to detect failures?
 - Probing for sensing ranges
 - Listening for HELP messages
 - How to synchronize multiple schedules a redundant node may have?
 - How to dynamically adapt the schedule when the redundant node fails?

TARA: Overview I

- A monitoring sensor network alternates between dormant periods and crisis periods
 - During dormant periods, minimum resources are kept online (DADA)
 - A hot spot will form during crisis periods

- Source hot spot
- Sink hot spot
- intersection hot spot

Sink 1

Source 2

TARA: Overview II

- Traffic control vs. resource control
 - Traffic control schemes throttle source traffic rates to eliminate hot spots
 - Resource control is preferred in sensor networks
 - Data packets during crisis states can NOT be dropped
 - > Fidelity requirement
 - Sensor nets are deployed for peak load
 - Bringing resources online is realistic
 - e.g. sensor nodes
- Resource control schemes
 - Forming alternative routing topology
 - Multiple-path routing
- Topology-aware resource control
 - e.g. dose the new topology provide sufficient capacity?
- TARA has two main components:
 - Capacity estimation tool
 - Resource adaptation algorithm

TARA: Capacity Analysis

 $O \xrightarrow{1} O \xrightarrow{2} O$

Capacity fraction = 1/2

Assumption: only adjacent nodes can hear/interfere each other

- Goal: to estimate the maximum end-toend throughput of a given topology
 - The maximum rate at which the source can send packets towards the sink
- Idea: mapping this problem to a graph coloring problem
 - Due to link interference, the end-to-end throughput is a fraction of the 1-hop throughput (capacity fraction)
 - Suppose under an optimal schedule, the sink receives a packet every n time frames, then the capacity fraction is 1/n
 - The throughput is (1-hop throughput * capacity fraction)

TARA: Capacity Analysis

- Idea: mapping this problem to a graph coloring problem
 - Suppose under an optimal schedule, the sink receives a packet every n time frames, then the capacity fraction is 1/n
 - To estimate n
 - Spatial interference graph
 - Vertexes are wireless links
 - Edges mean that two links are within each other's interference ranges
 - N is equal to the number of colors assigned to the spatial interference graph
- Graph coloring problem
 - Theorems can provide an upper bound
 - Heuristic approaches provide tighter estimates

- TARA has the following steps:
 - Congestion detection
 - e.g. channel loading, packet drop ratio, queue occupancy, etc.
 - Traffic distributor
 - Each node maintains the incoming traffic rate from each neighbor

- TARA has the following steps:
 - Congestion detection
 - Traffic distributor
 - Traffic merger should
 - Have a low congestion level
 - Reside on the routing path to the intended sink
 - Result in sufficient capacity
 - Based on the observations gained using the capacity analytical tool

TARA has the following steps:

- Congestion detection
- Traffic distributor
- Traffic merger
- Build a detour path
 - The merger initiates the process with flooding a REQ message including the TTL
 - A node that receives the REQ message decrements the TTL, and forwards the message with the following optimizations:
 - > A node drops REQ if its congestion level is high
 - A node drops REQ if it is on the original routing path
 - A node only forwards the REQ with a higher TTL
 - Multiple REQ messages will reach the distributor, and it chooses the path with highest TTL

TARA has the following steps:

- Congestion detection
- Traffic distributor
- Traffic merger
- Build a detour path
 - The merger initiates the process by flooding a REQ message including a TTL field
 - A node that receives the REQ message decrements the TTL, and forwards the message with the following optimizations:
 - > A node drops REQ if its congestion level is high
 - A node drops REQ if it is on the original routing path
 - A node only forwards the REQ with a higher TTL
 - Multiple REQ messages will reach the distributor, and it chooses the path with highest TTL

- TARA has the following steps:
 - Congestion detection
 - Traffic distributor
 - Traffic merger
 - Build a detour path
 - The distributor distributes the traffic between two paths
 - Traffic allocation is topologydependent

TARA: A few issues ...

- TARA also reduces the online resource when traffic decreases
- A three-tiered resource controlling scheme
 - For very short-term congestion
 - Larger buffer size
 - Prioritizing packets
 - Storing data locally
 - For short-term congestion
 - TARA
 - For longer-term congestion
 - Traffic control

MARA

- MARA provides data assurance against sensing errors
- Data classification mechanisms
 - Constraint-based Consistency Checks
 - Predefined constraints such as "temperature between 0 and 100"
 - Redundancy Consistency Checks
 - Multiple sensors monitoring the same variable
 - Multi-modal Consistency Checks
 - Multiple physical properties may exhibit correlation
- Data cleansing mechanisms
 - Robust statistical tool or robust aggregation tool
 - Challenge is to make them suitable for sensor platform

Conclusion

- Making the sensor system robust should not be an afterthought
- If you need more details on
 - DADA → Shengchao Yu's poster
 - TARA \rightarrow Jaewon Kang's talk in the afternoon
 - MARA \rightarrow Badri Nath's talk in the afternoon

Questions ???

