
Multi-Layer Packet Classification with
Graphics Processing Units

Matteo Varvello†∗, Rafael Laufer�, Feixiong Zhang2, T.V. Lakshman�
†Telefonica Research, matteo.varvello@telefonica.com
�Bell Labs, {firstname.lastname}@alcatel-lucent.com

2Rutgers University, feixiong@winlab.rutgers.edu

ABSTRACT
The rapid growth of server virtualization has ignited a wide adop-
tion of software-based virtual switches, with significant interest in
speeding up their performance. In a similar trend, software-defined
networking (SDN), with its strong reliance on rule-based flow clas-
sification, has also created renewed interest in multi-dimensional
packet classification. However, despite these recent advances, the
performance of current software-based packet classifiers is still lim-
ited, mostly by the low parallelism of general-purpose CPUs. In
this paper, we explore how to accelerate packet classification using
the high parallelism and latency-hiding capabilities of graphic pro-
cessing units (GPUs). We implement GPU-accelerated versions for
both linear and tuple search, currently deployed in virtual switches,
and also introduce a novel algorithm called Bloom search. These al-
gorithms are integrated with high-speed packet I/O to build GSwitch,
a GPU-accelerated software switch. Our experimental evaluation
shows that GSwitch is at least 7x faster than an equally-priced CPU
classifier and is able to reach 10 Gbps with minimum-sized packets
and a rule set containing 128K OpenFlow entries with 512 different
wildcard patterns.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Designs]: Network communi-
cations; C.2.6 [Internetworking]: Routers; D.2.8 [Software Engi-
neering]: Metrics—complexity measures, performance measures

General Terms
Algorithms, Design

Keywords
Packet classification; Software-defined networking; OpenFlow; Soft-
ware switch; GPU; CUDA

∗Work done while at Bell Labs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT’14, December 2–5, 2014, Sydney, Australia.
Copyright 2014 ACM 978-1-4503-3279-8/14/12 ...$15.00.
http://dx.doi.org/10.1145/2674005.2674990.

1. INTRODUCTION
Recent trends in virtualization are stimulating the wide adop-

tion of virtual switches, i.e., software programs that run within the
hypervisor to enable the communication among virtual machines.
Commercial virtual switches, such as Open vSwitch [1] and Cisco
Nexus 1000V [4], are already deployed in datacenters, mostly be-
cause of the tight integration they provide with virtualization soft-
ware suites.

For high performance, virtual switches must sustain rates of at
least 10 Gbps without incurring much overhead at the server. This
is a major challenge, because it requires not only high-speed packet
I/O, but also efficient packet classification algorithms. Recent ad-
vances in software-based packet I/O have shown that wire speed is
achieved with optimizations in the data path [7, 10, 20]. The same,
however, cannot be said about packet classification. In fact, the re-
cent emergence of software defined networking (SDN) and Open-
Flow [17], with its large rule tables and long multi-dimensional
tuples, have been imposing unforeseen challenges to current packet
classifiers [6, 18]. As a result, new directions to accelerate software-
based switching are required in order to support the ever-increasing
throughput demands.

Due to their high parallelism, graphics processing units (GPUs)
have been recently proposed to accelerate several software func-
tions, such as IP lookup [10, 14, 26], pattern matching [3, 13, 25],
and packet classification [10, 11]. However, the performance eval-
uation of recent GPU-based packet classifiers [10, 11] shows that
they still cannot sustain high packet I/O rates as the size and dimen-
sion of forwarding tables grow, e.g., the case of SDN. Exploiting
the full potential of GPUs is particularly challenging because of
their unique parallel programming model, which demands in-depth
knowledge of the underlying hardware architecture to support high
speeds. Consequently, existing software-based packet classifica-
tion schemes designed for sequential general-purpose CPUs model
cannot directly exploit the GPU parallelism.

In this paper, we show that much faster packet classifiers are
attainable with a careful design aimed at GPU hardware architec-
tures. In particular, our design incorporates several GPU-specific
features, including (1) memory accesses are always coalesced to
significantly reduce latency to off-chip memory; (2) on-chip SRAM
memory is heavily utilized and shared among threads to speed up
rule matching; and (3) all available GPU cores are exploited to their
full extent, i.e., 100% occupancy is guaranteed. Using these direc-
tives, we introduce highly efficient GPU implementations for three
packet classification algorithms: linear and tuple search, currently
deployed in virtual switches, and Bloom search, an optimization of
tuple search that takes advantage of Bloom filters to avoid expen-
sive table lookups. The three proposed algorithms are integrated

with high-speed packet I/O to build GSwitch, a GPU-accelerated
software switch.

GSwitch is evaluated using both synthetic and real rule sets [24].
We provide an experimental evaluation of each packet classifica-
tion algorithm, considering only its GPU performance at first to
fully understand its tradeoffs. The analysis is composed of several
GPU microbenchmarks, an in-depth comparison between GPU and
CPU performance using OpenCL, and a study on the classification
throughput for different rule sets. Experiments with high-speed
packet I/O are also performed to evaluate the forwarding through-
put and packet latency of GSwitch under different scenarios.

The major outcome of this work is that a single GPU, if exploited
correctly, is capable of attaining high enough throughput to shift the
performance bottleneck in the data path from packet classification
back to packet I/O once again. Additional outcomes of this work
are summarized in the following:

• Depending on the algorithm, packet classification in our GPU
is up to 7x (linear search), 11x (tuple search), and 12x (Bloom
search) faster than an OpenCL implementation in an equally-
priced 8-core CPU;

• Bloom search is our fastest and most scalable algorithm, sup-
porting up to 10 Gbps with minimum-sized 64-byte Ethernet
frames and a large table with 128K OpenFlow rules and 512
different wildcard patterns;

• Under a real rule set [24], GSwitch is able to forward 64-
byte frames at 30 Gbps and a maximum per-packet latency of
500 µs, and achieves higher throughputs with more relaxed
delay requirements.

The remainder of this paper is organized as follows. We present
the related work in Section 2, and provide a brief overview of the
GPU architecture in Section 3. Section 4 describes the design and
implementation of the linear, tuple, and Bloom search algorithms
for GPU. In Section 5 we introduce GSwitch, a GPU-accelerated
software switch with high-speed packet I/O. Section 6 describes our
experimental evaluation, whose results are discussed in Section 7.
Finally, Section 8 concludes the paper.

2. RELATED WORK
Graphics processing units (GPUs) have been applied to several

computation-intensive applications, such as IP lookup [10, 14, 26]
and pattern matching [3, 13, 25]. More recently, GPUs have also
been adopted to improve the performance of general packet classi-
fiers [10, 11].

Han et al. [10] introduce a GPU-accelerated software router,
PacketShader, where GPUs are used for packet classification and
provide major performance gains. The system focus is mostly on
improving packet I/O performance at the operating system level
as well as efficiently offloading packet batches to GPU. To clas-
sify packets, the authors adopt an implementation of linear search.
Performance results show that PacketShader is able to classify in-
coming packets at 7 Gbps with two GPUs, assuming a rule set of
1M exact matching rules and 1K wildcard matching rules1.

Comparing our work with [10] is challenging due to the follow-
ing reasons. First, our GPU has 32 additional cores than the GPU
used in [10]. Second, the results in [10] are derived assuming two
GPUs working in parallel. Third, it was not possible for the au-
thors of [10] to open source the GPU code of PacketShader. Nev-
ertheless, for the same scenario of 1K wildcard rules, our linear
1PacketShader implements the full OpenFlow matching algorithm,
i.e., exact matching plus wildcard matching in case of a miss.

GPU
Host

Registers (32,768 32−bit words) Registers (32,768 32−bit words)

Streaming Multiprocessor 0 Streaming Multiprocessor 15

...

Host Memory

PCIe 2.0 x16 8.0 GB/s

Device Memory (1.5 GB GDDR5)

384−bit bus 192.4 GB/s

L2 Cache (768 KB)

L1 (16 KB) Shared Memory (48 KB) L1 (16 KB) Shared Memory (48 KB)

Figure 1: Architecture of the NVIDIA GTX 580 GPU.

search implementation achieves 20 Gbps, cf. Figure 6(c). Assum-
ing that the bottleneck in [10] is the wildcard matching algorithm,
this indicates a 2.8x throughput gain despite we only rely on a sin-
gle GPU, or 512 cores versus 960 cores. This throughput improve-
ment is due to (1) our careful implementation that fully exploits
the GPU parallelism and enforces memory coalescing, and (2) the
heavy utilization of fast on-chip SRAM memory for speeding up
rule matching.

Kang et al. [11] explore metaprogramming, i.e., generating source
or executable code dynamically from a more abstract program, to
implement linear search in GPUs. Under this premise, rules are
embedded in the code as compilation-time constants, which are lo-
cally stored in a read-only cache.

Compared to [11], our linear search implementation provides
comparable performance figures. In fact their metaprogramming
approach is likely to achieve caching of classifiers in SRAM mem-
ory, similarly to our design rationale. Nonetheless, linear search is
our slowest solution; both tuple and Bloom search are able to clas-
sify packets up to 7x faster.

3. GPU BACKGROUND
This section reviews the architecture and operation of a graphics

processing unit (GPU) as well as few metrics used to measure its
performance.

Figure 1 shows the architecture of the NVIDIA GTX 580 GPU
used in this work. It has a total of 16 streaming multiprocessors
(SMs), each with 32 stream processors (SPs) running at 1544 MHz.
Memory is hierarchically organized with higher positions reflecting
faster response times as well as lower storage capacities. At the bot-
tom of the hierarchy, the device memory (1.5 GB) and the L2 cache
(768 KB) are shared among the SMs and are off-chip. In contrast,
the small L1 cache (16 KB) and the shared memory (48 KB) are
on-chip and guarantee low latency and high bandwidth. Finally, at
the top of the hierarchy, registers (32K per SM) provide the fastest
access speed, but limited storage space.

All threads in the GPU execute the same function, called kernel.
A kernel execution consists of three steps: (1) copying the input
dataset from the host CPU memory to the GPU device memory;
(2) kernel execution; and (3) copying the results back from device
to host memory. Although significant, the overhead of these data
transfers can be amortized by pipelining via concurrent copy and
execution [21]. As a result, kernel execution is usually the bottle-
neck and must be optimized for high performance (cf. Section 4).

The degree of parallelism of a kernel is controlled by two pa-
rameters, namely, the number of blocks and the number of threads

per block. Blocks are sets of concurrently executing threads that
collaborate with each other using shared memory and barrier syn-
chronization primitives. At run-time, each block is assigned to a
SM that first allocates the resources for the block, such as regis-
ters and shared memory (both known at compile-time), and then
activates it for execution.

During execution, each SM follows the single instruction mul-
tiple thread (SIMT) parallel programming model, with all 32 SPs
executing the same instruction in lockstep for a warp (i.e., a set
of 32 threads). Threads in a warp use unique identifiers to access
different memory addresses, and thus perform the same task for a
large dataset in parallel.

After activating a block for execution, the SM partitions it into
32-thread warps, that are independently scheduled by a dual-warp
scheduler. The scheduler selects two warps at a time and issues
one instruction from each. The block resources remain allocated in
the SM for as long as the block is active, resulting in zero context-
switch overhead for the scheduler. If a warp stalls on an instruction
fetch, a synchronization barrier, or a data dependency (e.g., mem-
ory reads), other eligible warps are immediately scheduled in an
attempt to hide latency.

There are several metrics to evaluate the performance of a kernel.
We now describe the two most important metrics which motivate
our design of packet classification in GPU. A full description of
other GPU metrics can be found in [15].

Load efficiency: Cache lines in the NVIDIA GTX 580 GPU have
a 128-byte granularity, which incurs a high loading overhead if
threads only require a handful of these bytes. However, if all threads
in a warp are instructed to read/write memory addresses within the
same cache line, then the GPU efficiently maps these reads/writes
into a single transaction from device memory. This memory access
pattern is called coalesced. The load efficiency is a metric to mea-
sure the amount of coalesced memory accesses, and it is defined
as the ratio between the number of requested bytes and the total
number of bytes fetched from device memory.

Occupancy: The occupancy is defined as the fraction of time that
the threads in the SMs are actually working, and it is limited by
two factors. First, SMs have a hard limit on the number of blocks
and threads concurrently executing. As a result, kernels must be
carefully dimensioned to respect these limitations. Second, regis-
ters and shared memory must be available in the SM for each block
before (and during) its execution. Therefore, the required per-block
resources should be low to allow more blocks to run in parallel.

In the NVIDIA GTX 580, a maximum of 8 blocks and 48 warps
(1536 threads) can be concurrently allocated and executing within
each SM. In addition, no block is allowed to have more than 1024
threads. It follows that only a few 〈blocks per SM, threads per
block〉 configurations are able to achieve 100% occupancy, namely
〈8, 192〉, 〈6, 256〉, 〈4, 384〉, 〈3, 512〉, and 〈2, 768〉. In addition,
each thread must not use more than b32K/1536c = 21 registers
and more than 48 KB/1536 = 32 bytes of shared memory2 to have
all 1536 threads concurrently running.

4. DESIGN AND IMPLEMENTATION
This section introduces the design and implementation of linear,

tuple, and Bloom search for GPUs. Before doing so, we briefly
summarize the adopted terminology.

A tuple is defined as the set of header fields used for packet clas-
sification. A rule is the ensemble of a value, a mask, an action,

2Shared memory is allocated per block, hence the limit is in prac-
tice 32× T bytes, where T is the number of threads per block.

and a priority [9]. The rule value specifies the bits required in the
header of an incoming packet to have a match, with wildcards al-
lowed. The mask specifies the position of the wildcarded fields
within the rule value. The action is the operation to perform on
a packet whose tuple matches the corresponding rule. Finally, the
priority defines the importance of a rule and it is used to handle the
case of overlapping rules, i.e., multiple rules that match the same
tuple. We call a collection of rules a rule set.

Packet classification consists of identifying the highest-priority
rule that matches the tuple of an incoming packet. After classifica-
tion, the action of the matching rule is then applied to the packet.

4.1 Linear Search
Linear search consists of checking the tuple of an incoming packet

against all entries in the rule set. For each rule, the tuple is first
masked using the wildcard bits from the rule mask and then com-
pared with the rule value.

Algorithm 1 shows our linear search kernel. As input, it requires
the arraysR and T that contain the rules and tuples to be looked up,
respectively. The kernel computes the index of the matching rule
for each tuple t ∈ T and stores them in the index array I , which is
later used by the CPU to find the proper action for the packet. This
design choice of storing only the rule value, mask, and priority in
GPU while keeping the rule action in CPU allows us to avoid deal-
ing with variable-sized actions, and to more efficiently exploit the
memory space in GPU. The R, T , and I arrays reside in the GPU
device memory. Each block also keeps a copy of n rules that are
loaded at run-time to theR′ array in shared memory to improve the
matching speed. In GPU programming, a few variables are avail-
able to threads at run-time: blockIdx and threadIdx, corresponding
to the block and the thread indexes, respectively, as well as blocks
and threads, corresponding to the number of blocks and threads
per block, respectively.

The kernel is designed to maximize parallelism by splitting the
rule set among the several blocks, such that each block is respon-
sible for checking the incoming tuples only against part of the set.
Accordingly, line 1 computes the maximum number of rules per
block, respecting the shared memory limit of n rules, and line 2
calculates the offset of the block within the rule set.

Lines 3–24 are the core of linear search. In each iteration, at
most n rules are copied to shared memory and then compared to all
tuples in T . The while loop in line 3 runs until the current offset
exceeds the number of rules |R|. Line 4 computes the actual num-
ber of rules to copy. Line 5 performs coalesced memory accesses
to load the subset of rules to shared memory. The READAOS call
is showed in Algorithm 2, where each thread copies a 32-bit word
at a time from an array of structures (AoS). Threads with consecu-
tive indexes access consecutive addresses, guaranteeing coalesced
memory accesses. The SYNCTHREADS() call in line 6 imposes a
synchronization barrier to ensure that all threads in the block have
finished copying after this line.

After loading rules to shared memory (lines 5-6), matching is
then performed (lines 8–20). Each thread uses its threadIdx (line 7)
to read a tuple t from the array T using the READSOA() call showed
in Algorithm 3. In this case, the array T is organized as a structure
of arrays (SoA) with 32-bit granularity, i.e., the first 32-bit word of
each tuple is stored sequentially in memory, then the second word
of each tuple, and so on. The SoA format allows each thread to
load a unique tuple while still ensuring that memory accesses are
coalesced. In lines 12–18, the tuple t is checked against all rules
in shared memory. If, after proper masking, t matches a rule with
higher priority than any previous rule, then the priority (line 15)
and global index (line 18) of this rule are saved. In case of a match,

Algorithm 1: Linear search kernel
Input: rules R, tuples T
Output: rule indexes I for each tuple t ∈ T
Data: rules R′[n] in shared memory

1 rulesPerBlock← MIN(d |R|/blockse, n)
2 rulesOffset← rulesPerBlock × blockIdx
3 while rulesOffset < |R| do
4 rules← MIN(|R| − rulesOffset , rulesPerBlock)

5 R′ ← READAOS(R, rulesOffset , rules)

6 SYNCTHREADS()

7 tid← threadIdx
8 while tid < |T | do
9 t←READSOA(T, tid) // Get a tuple

10 rIdx ← NIL

11 rPri ← NIL

12 for i← 0 to rules− 1 do // Look for a match

13 val ←GETVALUE(R′[i])

14 mask ←GETMASK(R′[i])

15 pri ←GETPRIORITY(R′[i])

16 if (t&mask) = val and pri > rPri then
17 rPri ← pri

18 rIdx ← rulesOffset + i

19 if rIdx 6= NIL then // Write to memory

20 ATOMICMAX(I[tid], (rPri� 24) | rIdx)

21 tid← tid+ threads

22 SYNCTHREADS()

23 rulesOffset←rulesOffset+ rulesPerBlock×blocks

Algorithm 2: Read from an array of structs (READAOS)
Input: array A, offset o, entries n
Output: array A′ containing entries A[o, . . . , o+ n− 1]

Data: pointer B to access A as an array of 32-bit words
pointer B′ to access A′ as an array of 32-bit words

1 size←WORDSPERENTRY()

2 tid← threadIdx
3 while tid < n× size do
4 B′[tid]← B[o× size+ tid]

5 tid← tid+ threads

lines 19–20 write the index of the matching rule with highest prior-
ity to device memory. In line 19, the ATOMICMAX(u, v) call stores
the value of v into u only if v is higher than the value of u. This
call is atomic to prevent potential racing conditions across all SMs.
The rule priority is an 8-bit integer stored in the most significant
bits to ensure that a higher-priority rule has precedence regardless
of its index value.

Finally, SYNCTHREADS() is called in line 22 to ensure that all
threads have finished with the current rule subset in shared memory
before moving on to the next. The rule offset is then increased in
line 23 and matching is performed on the next rule subset.

Algorithm 3: Read from a struct of arrays (READSOA)
Input: array A, entry index eIdx
Output: entry e containing entry A[eIdx]
Data: pointer B to access A as an array of 32-bit words

pointer B′ to access e as an array of 32-bit words

1 size←WORDSPERENTRY()

2 for i = 0 to size− 1 do
3 B′[i]← B[eIdx+ i× |A|]

4.2 Tuple Search
Although simple, linear search takes O(RT) time and does not

scale well as the number of rules increases. Therefore, we now
introduce a GPU-accelerated algorithm for tuple space search [23],
which is more efficient for large rule sets. Tuple search is the packet
classification algorithm adopted by Open vSwitch [1].

Tuple search uses the notion of a class or a set of rules with the
same mask, i.e., wildcards in the same header bits. Rules belong-
ing to a class are stored in the same class table, which is typically
implemented as a hash table for efficient lookup. In this case, the
rule value is the key being hashed and the rule, represented by the
set 〈value, action, priority〉, is stored in the table. Each class has
a class mask which is the same for all rules. Matching in tuple
search consists of, for each class, masking the tuple using the class
mask and looking the result up in the class table. The rule with the
highest priority among rules of all classes is the final match.

We implement class tables using cuckoo hashing [19], which
provides constant lookup time and is provably more efficient than
chaining. In cuckoo hashing, the table is composed of s equally-
sized subtables, each with d slots. Let R = {r1, r2, . . . , rn},
with n ≤ s × d, be the set of rules to be inserted into the class
table. To insert a rule ri, the values h1(ri), h2(ri), . . . , hs(ri)
are computed from a set of independent and uniform hash func-
tions {hj | j = 1, . . . , s} and used as indexes in each of the corre-
sponding subtables. If one of these slots is empty, then rule ri is
stored at this slot and the insertion terminates. Otherwise, a sub-
table q must be selected and the rule rj , stored at the required slot
hq(ri) = hq(rj), is evicted to make space for ri. The same pro-
cedure is then repeated to reinsert rj back into the table. If, dur-
ing this procedure, a given number of tries is reached, then a new
set of hash functions is selected and all rules are reinserted. Re-
hashes, however, are very rare if the tables are well dimensioned.
The lookup of a tuple t consists of two steps. First, the class mask
is applied to the tuple t, deriving the masked tuple u. Then, the
slots h1(u), h2(u), . . . , hs(u) in each of the corresponding subta-
bles are checked, which is done in O(s) in the worst case.

For hashing, we implement and analyze the GPU computation
performance of three non-cryptographic hash functions: universal,
MurmurHash3, and SuperFastHash. Due to their simplicity, univer-
sal hash functions provide by far the highest computation through-
put and are chosen for our kernel. The universal hash functions
used are defined as hi(x) = [(ai x+ bi) mod p] mod d, where p
is a large prime and both ai and bi are randomly selected integers
modulo p with ai 6= 0. The parameters ai and bi are loaded to con-
stant memory at the GPU initialization and stored at a read-only
cache during the kernel execution for faster computations.

Algorithm 4 shows our tuple search kernel. As input, it requires
arrays H , M , and T that contain the cuckoo hash tables, class
masks, and tuples to be looked up, respectively. As before, the
kernel returns the indexes of the highest priority rule for each tu-

Algorithm 4: Tuple search kernel
Input: cuckoo hash tables H , class masks M , tuples T
Output: rule indexes I for each tuple t ∈ T
Data: cuckoo hash table H ′[s, d] in shared memory

class mask M ′ in shared memory

1 H ′ ← READAOS(H, blockIdx, 1)
2 M ′ ← READAOS(M, blockIdx, 1)

3 SYNCTHREADS()

4 tid← threadIdx
5 while tid < |T | do
6 t←READSOA(T, tid) // Get a tuple

7 u← t&M ′ // Get masked tuple

8 x←TUPLEHASH(u) // Compute tuple hash

9 rIdx ← NIL

10 rPri ← NIL

11 for subtable i← 0 to s− 1 do
12 j ← hi(x) // Get subtable slot

13 if u = H ′[i, j] then
14 rPri ← GETPRIORITY(H ′[i, j])

15 rIdx ← blockIdx× s× d+ i× d+ j

16 break

17 if rIdx 6= NIL then // Write to memory

18 ATOMICMAX(I[tid], (rPri� 24) | rIdx)

19 tid← tid+ threads

ple t ∈ T in array I . In this design, each block is responsible for
matching all tuples against a single class. For improved matching
performance, each block keeps a copy of the class table and mask
in H ′ and M ′, which are loaded at run-time to shared memory.

Lines 1–2 load the class table and mask to shared memory us-
ing coalesced accesses. Note that, since each block is responsible
for a class, we use blockIdx as the offset in both cases. A SYNC-
THREADS() call is then used to ensure that threads in the block
have finished copying after this line. Lines 5–16 perform the table
lookup. In line 6, each thread loads a tuple t ∈ T and a bitwise
AND with the class mask is performed in line 7, deriving u. Then,
line 8 computes the 32-bit tuple hash x to speed up the slot compu-
tations in line 12. The for loop (line 11) goes over each subtable,
computes the candidate slot for u based on x (line 12), compares it
with the rule value in that slot (line 13). If so, the priority and the
global index of this rule are saved (lines 14–15) for later writing
them to memory (lines 17–18). The tuple index is then increased in
line 19 to load the next tuple.

4.3 Bloom Search
Tuple search requires checking a tuple against each class table,

which translates to a large number of table lookups in the case of
many classes. We therefore propose to use Bloom filters as a com-
pact representation of the class tables to quick identify the matching
classes and perform table lookups only when there is a filter match.
This technique is similar to solutions proposed for high-speed IP
lookup in SRAM [8, 22], but not yet explored in GPUs.

A Bloom filter [2] is a space-efficient data structure that con-
sists of an array with m bits and k independent hash functions
g1, g2, . . . , gk whose outputs are uniformly distributed over the dis-
crete range {0, 1, . . . ,m − 1}. We use a Bloom filter to represent

Algorithm 5: Bloom search kernel
Input: Bloom filters B, tables H , masks M , tuples T
Output: rule indexes I for each tuple t ∈ T
Data: Bloom filter B′ in shared memory

cuckoo hash table H ′[s, d] in shared memory
class mask M ′ in shared memory

1 B′ ← READAOS(B, blockIdx, 1)
2 H ′ ← READAOS(H, blockIdx, 1)
3 M ′ ← READAOS(M, blockIdx, 1)

4 SYNCTHREADS()

5 tid← threadIdx
6 while tid < |T | do
7 t←READSOA(T, tid) // Get a tuple

8 u← t&M ′ // Get masked tuple

9 x←TUPLEHASH(u) // Compute tuple hash

10 match ← TRUE

11 for i← 0 to k − 1 do // Check BF bits

12 j ← gi(x)

13 if B′[j] =FALSE then
14 match ← FALSE

15 break

16 if match = TRUE then // Find matching rule

17 rIdx ← NIL

18 rPri ← NIL

19 for subtable i← 0 to s− 1 do
20 j ← hi(x) // Get subtable slot

21 if u = H ′[i, j] then
22 rPri ← GETPRIORITY(H ′[i, j])

23 rIdx ← blockIdx(s× d) + (i× d) + j

24 break

25 if rIdx 6= NIL then // Write to memory

26 ATOMICMAX(I[tid], (rPri� 24) | rIdx)

27 tid← tid+ threads

the set R = {r1, r2, . . . , rn} of n rules within a class. Initially, all
bits in the filter are set to 0. Then, for each rule ri ∈ R, the bits
of positions g1(ri), g2(ri), . . . , gk(ri) are set to 1. The lookup for
a tuple t in a class C works as follows. First, we mask t with the
class mask and derive u, then we check whether the bits of positions
g1(u), g2(u), . . . , gk(u) are set to 1. If at least one bit is 0, then
no rule ri ∈ R applies to t. Otherwise, a matching rule exists in C
with high probability and, with a low probability (1 − e−kn/m)k,
this is a false positive. This probability can be maintained low in
practice by properly choosing parameters k andm for a given num-
ber n of rules. After a match is found in the filter, for each candidate
matching class, we check the corresponding tables to either rule out
eventual false positives or to retrieve the rule priority.

Algorithm 5 shows our Bloom search kernel. This kernel is sim-
ilar to the tuple search kernel (cf. Algorithm 4). The main differ-
ences between the two kernels are that Bloom filters also need to
be loaded to shared memory at run-time (line 1) and its bits must
be checked for every incoming tuple (lines 10-14). Also, the table
lookup is only performed if a rule is found by the filter (line 15). For
the filter hash functions, we use universal hash functions defined as

...

...

...

...

...

...

Interface GPUInterfaceInterface

Hardware

RX

C
U

D
A

G
S

w
it

c
h

RXTXTXRXTX

P
F

_
R

IN
G

Kernel

GPU DriverNIC DriverNIC DriverNIC Driver

S
tr

e
a
m

s

Userspace

CUDA API

D H

K

H D

D H

K

H D

K

H D

D H

K

H D

D H K

D H

H D

K

D H

H D

PF_RING API PF_RING API PF_RING API

Figure 2: The software architecture of GSwitch.

hi(x) = (ai x+ bi) � (32− log2m), where the filter size m is
a power of two to avoid modular operations on a per-packet basis.
The lookup in the cuckoo hash table is only performed if a match
is found in the filter.

5. GSWITCH
We now integrate the previous algorithms with high-speed packet

I/O. GSwitch is a multi-threaded application running in userspace
and capable of classifying packets from multiple 10GbE ports si-
multaneously. It is built on top of publicly available APIs and com-
posed of roughly 7K lines of C++ code. High-speed packet I/O is
realized using PF_RING [7], a network socket optimized for cap-
turing minimum 64-byte packets at wire speed. PF_RING directly
exposes the NIC ring buffer to applications in userspace, thus re-
ducing the high overhead of the OS network stack. Compared to
alternative packet I/O acceleration engines, such as netmap [20]
and PacketShader [10], PF_RING provides higher configuration
flexibility and the same high-speed performance. For interfacing
with the GPU, GSwitch uses the compute unified device architec-
ture (CUDA) API provided by NVIDIA.

Figure 2 shows the software architecture of GSwitch. At the
bottom, the NIC driver interfaces with the TX/RX ring buffers of
PF_RING, and manages the hardware. When the incoming traffic
rate is low, packets are received via direct memory access (DMA)
initiated by regular interrupt calls. As the rate grows, packet I/O in-
terrupts are disabled to avoid receive livelock, and periodic device
polling is used for efficient interrupt coalescing. Similarly, packet
transmissions are initiated by DMA requests when the number of
enqueued packets in the TX ring buffer is above a minimum thresh-
old of 128 packets.

PF_RING modifies the NIC driver to enable the NIC to share
its circular buffer with an application such as GSwitch. When a
packet is received at the NIC, the driver advances the writer pointer
forward in the RX ring buffer; GSwitch then reads the packet and
advances the reader pointer. Transmissions are performed using the
TX ring buffer, with GSwitch having the role of the writer and the
driver as the reader. Since each ring only has a single reader/writer,
I/O operations are lock-free in the OS kernel.

GSwitch assigns a separate thread to each TX/RX ring buffer;
these threads are hard-affinitized to a CPU core to eliminate pro-
cessing bottlenecks and migration costs. Packets are read from the
RX ring buffer either when the buffer contains enough packet to
form a batch or when a timeout occurs (cf. Section 7).

GSwitch takes advantage of CUDA streams, which are FIFO
task queues that allow threads to asynchronously send jobs to the
GPU in a guaranteed execution order. Each thread has its own
stream, to which it issues a sequence of commands to (1) copy a
batch of tuples (header fields) from host to device memory, (2) run
the packet classification kernel in GPU, (3) copy the results from
device to host memory, and (4) register the batch completion us-
ing a CUDA event. Streams allow the CPU and GPU to overlap in
time, with the CPU receiving packets of the next batch while the
GPU classifies the packets of the current batch. Streams also im-
prove overall GPU utilization with concurrent copy and execution,
i.e., while a kernel from one stream is running, a data copy from
another stream may occur in parallel.

After dispatching a batch to the GPU, the RX thread inserts the
batch information (e.g., memory address and length) into a buffer
shared with the TX thread of the same NIC. The TX thread then
uses a synchronous call to wait for the corresponding CUDA event
indicating the batch completion. Once the GPU is finished with the
batch, its packets are forwarded to the selected output TX queues.
To prevent race conditions, each TX queue has a read-write lock
which must be acquired before the queue can be updated.

6. EXPERIMENTAL METHODOLOGY
We perform an experimental evaluation of packet classification

in GPU and GSwitch. In this paper, we assume that classifiers are
statically stored in the device memory of GPU, i.e., classifiers are
already in the GPU before the packets arrive. Experiments are con-
ducted both with and without packet I/O in order to isolate perfor-
mance bottlenecks in the packet classification and in the packet I/O.
When packet I/O is turned off, the batch of incoming packets is gen-
erated at 10 Gbps per interface directly at the switch. When packet
I/O is active, the software switch is connected to a software-based
traffic generator based on PF_RING, which acts both as packet
source and sink.

GSwitch runs on a server equipped with two Intel Nehalem quad-
core Xeon X5550 2.66 GHz processors, a Super Micro X8DAH+F
motherboard, 12 GB DDR3 memory, and a NVIDIA GTX580 GPU
[16] (cf. Section 3). We choose this configuration since it only in-
cludes inexpensive commodity hardware, as the whole system costs
about $2,000. Additionally, this configuration allows us to make
a fair comparison between the GPU and CPU performance, since
the total cost of the two Intel Nehalem quad-core Xeon X5550
2.66 GHz processors is about $400, which is approximately the
same price of the NVIDIA GTX 580 GPU. The traffic generator
runs on a machine equipped with an 8-core AMD FX-8350 proces-
sor and 16 GB DDR3 memory. Each machine is further equipped
with two Intel X520-DA2 dual-port 10GbE NICs for a theoretical
aggregate rate of 40 Gbps.

Each experiment consists of 1,000 runs for which we report av-
erage and standard deviation by mean of error bars. To quan-
tify the speed of each classification algorithm when packet I/O is
turned off, we measure the number of tuples per second classified
by the GPU and then derive the throughput in gigabits per second
(Gbps) assuming, unless otherwise stated, 84-byte Ethernet frames,
i.e., the minimum 64-byte payload size plus 20-byte Ethernet over-
head. With packet I/O enabled, we experiment with several differ-
ent packet sizes (cf. Section 7.4) and measure the throughput as the
rate at which GSwitch is able to forward the received packets.

Rule sets and incoming tuples are sampled from both real and
synthetic traces. We consider two scenarios:

Realistic scenario: This scenario quantifies the performance gains
of GPU acceleration for packet classification in a real setting (Sec-

Figure 3: The cumulative distribution function (CDF) of the
number of rules per class for ACL, IPF, and IPC.

tion 7.2 and 7.4). We use real rule sets from ClassBench [24], a
publicly available tool for benchmarking packet classification al-
gorithms. ClassBench comes with three real rule sets: Access con-
trol list (ACL), containing 1834 rules and 80 classes; IP forwarding
(IPF), with 914 rules and 221 classes; and IP chaining (IPC), with
2180 rules and 245 classes. Each set only contains classic 5-tuple
rules3. Figure 3 plots the cumulative distribution function (CDF) of
the number of rules per class for the ACL, IPF, and IPC rule sets,
respectively. Overall, the distribution of rules per class is skewed;
the three sets exhibit a high number of classes (about 25-30%) with
a single rule, and only few classes (about 1-2%) with more than 100
rules. The largest class is found in the ACL rule set and contains
384 rules. The trace containing the packets to be classified are also
provided by ClassBench along with each rule set.
Synthetic scenario: This scenario explores the impact of system
parameters and rule set characteristics on each classification algo-
rithm (Sections 7.1 and 7.3). For this purpose, we generate syn-
thetic rule sets varying features like the number of rules and classes.
Rule generation is done by mean of a simple tool we wrote that
takes a tuple with f fields as input and generates a rule set com-
posed of N rules, each with f fields, organized as C classes. The
tool uses the input tuple to generate C masks by replacing its fields
with unique combinations of wildcards. Rules in a class are created
by randomly varying the non-wildcarded fields. The input tuples to
be classified are derived from the synthetic rule set by randomly
setting masked fields.

7. EVALUATION
This section experimentally evaluates our packet classification

algorithms in GPU. Section 7.1 presents the results from a series
of microbenchmarks conducted to properly set system parameters.
Section 7.2 then compares the throughput achieved by the GPU
and our multi-core CPU. Next, Section 7.3 analyzes the impact
of system parameters and rule set characteristics on the through-
put achieved by each classification algorithm. Finally, Section 7.4
analyzes the performance of GSwitch focusing on throughput and
delay.

7.1 GPU Microbenchmarks
Batch size: Data transfers between host and device memory occur
before and after each kernel execution, and may incur a significant
overhead. We are interested in determining if these transfers could
affect the classification throughput.
3To our knowledge, there are no public OpenFlow rule sets.

Figure 4: Data transfer rates between host and device.

Figure 4 plots the bandwidth measured for a 1-GB transfer from
host to device, CPU to GPU, and vice-versa, using different buffer
sizes. The buffer size determines the amount of data transferred in
each transaction. Although host and device memory are connected
via PCIe 2.0 x16 (64 Gbps), we measure a maximum of 48 Gbps
from host to device, and 40 Gbps in the opposite direction, assum-
ing buffer sizes of few MB. This bandwidth difference compared to
the theoretical 64 Gbps is due to system call, DMA, and PCIe over-
heads. The asymmetry between the bandwidth measured in the two
directions is expected as detailed in [10]. The figure also shows that
for buffers of 1 MB or less, these overheads are even higher, which
further reduces the bandwidth. Nonetheless, a 10-Gbps link carries
a maximum of 14.8 million 64-byte packets; assuming the largest
tuple size, i.e., a 288-bit OpenFlow tuple per packet, a bandwidth
of only 4.3 Gbps is required between host and device memory. Fig-
ure 4 shows that this bandwidth can be achieved with buffers of at
least 8 KB, or equivalently, a batch of at least b8 KB*8/288c = 227
packets.

In addition to significantly reducing the data transfer overhead,
batches also impose an interesting tradeoff. On the one hand, the
transfer time should be lower than the kernel execution time in or-
der for the data transfer to overlap with a previous kernel execution
(cf. Section 3). On the other hand, we aim to offload enough tu-
ples to the GPU in order to fully exploit its parallelism. Figure 5(a)
and 5(b) analyze this tradeoff by plotting, respectively, the kernel
execution time versus the data transfer time, and the throughput of
each classification algorithm for different batch sizes P . We use
a synthetic rule set with 1K rules equally distributed among 128
classes, which is representative of a realistic trace (cf. Figure 3).

Figure 5(a) shows that, for P ≤ 1K, the transfer time is longer
than each kernel time, indicating that it cannot be effectively hidden
by a concurrent kernel execution. Conversely, when P > 1K, the
transfer time is shorter than the execution time of even the fastest
kernel, e.g., Bloom search requires 170 µs for P = 8K whereas
the transfer time takes only 100 µs. However, Figure 5(b) shows
that, independent from the algorithm, the batch must contain at
least 8K tuples to maximize throughput, and P > 8K provides
only a marginal throughput increase. As a result, in the remainder
of the evaluation we set P = 8K.

Blocks and threads per block: The number of blocks and threads
also have to be properly chosen in order to maximize GPU occu-
pancy. Table 1 shows the configurations that achieve 100% occu-

Blocks per SM (B) 2 3 4 6 8
Total number of blocks 32 48 64 96 128

Threads per block 768 512 384 256 192
Shared memory per block 24 KB 16 KB 12 KB 8 KB 6 KB

Table 1: Kernel configurations with 100% occupancy.

(a) N = 1K, C = 128. (b) N = 1K, C = 128. (c) Variable rules per class, see Table 2.

Figure 5: Microbenchmarks to evaluate (a) the kernel execution time versus the data transfer time, (b) the throughput as a function
of the batch size, and (c) the throughput of Bloom search as a function of the number C of classes.

pancy for each possible numberB of blocks per SM (cf. Section 3).
We now investigate the impact of B on the proposed classification
algorithms.

In linear search, each block compares all tuples against the rules
in its shared memory (cf. Section 4.1). Since shared memory is
equally partitioned among the B blocks, a smaller B results in a
larger shared memory size per block. In this case, each block is re-
sponsible for a larger subset of rules and, due to the smaller B,
tuples are read less often from device memory, significantly in-
creasing throughput. Hence, for linear search, we set B = 2, as
this is the best setting. We confirm this with experiments (omitted
here due to space).

For tuple and Bloom search, each block handles one class at a
time (cf. Sections 4.2 and 4.3), and performance depends on the
number of classes in the rule set. Figure 5(c) (top plot) shows the
throughput of Bloom search for different numbers C of classes as-
suming that (1)B equals either 2, 4, or 8; (2) the Bloom filter size is
1/6th of the available shared memory per block; and (3) each class
holds the maximum number of rules (cf. Table 2). We only evaluate
Bloom search as the tradeoffs are the same as those of tuple search.

Figure 5(c) shows that for C < 64, B = 8 blocks per SM pro-
vides the lowest throughput. This occurs because several blocks
remain idle as there are not enough classes to occupy all blocks.
As the number of classes increases, there are no idle blocks regard-
less of the value of B and the performance gap between the three
curves is reduced. Despite being hard to see, four and eight blocks
per SM guarantees the highest throughput for 50 ≤ C < 200 and
C ≥ 200 classes, respectively.

Blocks per SM 2 4 8
Shared memory per block (KB) 24 12 6

Tuple search
Cuckoo hash subtables 3 3 3

Slots per subtable 56 113 227
Max. rules per class 168 339 681

Bloom search
Cuckoo hash subtables 3 3 3

Bloom filter hash functions 2 2 2
Bloom filter size (KB) 0.5 1 2 1 2 4 2 4 8

Slots per subtable 51 47 37 103 94 75 208 189 151
Max. rules per class 153 141 111 309 282 225 624 567 453
False positive rate 6e-3 1e-3 1e-4 6e-3 1e-3 1e-4 6e-3 1e-3 1e-4

Table 2: Partition of the shared memory per block.

Data structures dimensioning: Table 2 shows how shared mem-
ory is partitioned in tuple and Bloom search. In both cases, we use
three subtables per cuckoo hash table, which provides a low worst-
case lookup time and a theoretical load factor of 90%. Each slot in
the table stores a 288-bit OpenFlow tuple and the priority used for
matching. The number of slots per subtable changes according to
the available shared memory and the classification algorithm.

In Bloom search, we use k = 2 hash functions per Bloom fil-
ter in order to keep the per-tuple computation low, and consider
three values for the filter sizem, namely 1/3rd, 1/6th, and 1/12th of
the available shared memory per block. We choose these ratios to
ensure that m is a power of two, which accelerates the modulo op-
erations in the hash computations (cf. Section 4.2). Table 2 shows
that as m decreases, the maximum number of rules per class in-
creases, since more shared memory space is available for the hash
table. However, smaller filters also result in slightly higher false
positive rates. These rates are relatively low and remain constant as
B varies, since the ratio between the number of rules and the filter
size is practically unchanged.

Figure 5(c) (bottom plot) shows the impact of different filter
sizes (1, 2, and 4 KB) on Bloom search throughput; we use the
same rule set of the top plot and set B = 4. Clearly, a similar
throughput is measured for the different filter sizes, e.g., less than
a 5% throughput decrease as m reduces from 4 to 1 KB. This indi-
cates that the few extra table lookups due to the slightly higher false
positive rate do not critically impact the classification throughput.
A similar behavior was also observed for B = 2 and B = 8 (not
showed).

In summary, the choice of the Bloom filter size m and the num-
berB of blocks per SM largely depends on the rule set. We thus use
the information derived from real rule sets (cf. Figure 3) to set m
and B for the performance evaluation. Since the number of classes
ranges between 80 and 245, we setB = 4 and, since the maximum
number of rules per class ranges between 100 and 400 rules, we
set m = 2 KB. The chosen configuration is shown in Table 2 in
boldface.

With B = 4 and m = 2 KB, each class can store up to 282
and 339 rules for Bloom and tuple search, respectively. However,
we set the maximum number of rules per class n to 256 for both
algorithms in order to (1) not overload the table, leaving the load
factor at 90%, and (2) simplify the evaluation in Section 7.3, since
the performance is the same for different numbers of rules per class.
Classes with n > 256 are logically organized in multiple classes
with the same mask, e.g., a class with 1K rules is split into four
classes, each with 256 rules.

(a) N = 128K, C = 512. (b) N = 128K, C = 512. (c) N = 256C.

Figure 6: (a) The speedup of GPU over CPU as a function of the number of cores, (b) throughput of both GPU and CPU as a function
of the batch size, and (c) throughput of GPU as a function of the total number N of rules.

GPU metrics: We measure our implementation of linear, tuple,
and Bloom search using the GPU performance metrics discussed
in Section 3. Each algorithm was implemented to reuse as many
registers as possible; in total, the per-thread register count is 19 for
both Bloom and tuple search, and 20 for linear search. The number
of blocks and threads per blocks are chosen as discussed above,
which coupled with the low register count and the proper shared
memory partition guarantees 100% occupancy. Load efficiency is
also 100%, as expected (cf. Algorithms 2 and 3).

7.2 GPU versus CPU
In this section, we compare the performance of packet classifi-

cation in GPU and CPU. The two Intel Nehalem quad-core Xeon
X5550 2.66 GHz used in our comparison is about $400 and is
equivalent to the price of our NVIDIA GTX 580 GPU. For the com-
parison, we port the CUDA code for each algorithm to OpenCL,
the open standard for parallel programming of heterogeneous sys-
tems [12]. OpenCL is a library that allows us to run packet clas-
sification in CPU in a parallel fashion. Next, we call speedup the
ratio between the throughput measured in GPU and the throughput
measured in CPU for a given experiment.

For these experiments, we assume a synthetic rule set composed
byN = 128K OpenFlow rules equally distributed amongC = 512
classes. These parameters are chosen to represent a challenging
rule set composed of a large number of rules and classes. We first
assume a batch of 8K tuples is offloaded to GPU and later we vary
the batch size from 256 up to 16K tuples.

Figure 6(a) plots the speedup of each packet classification algo-
rithm as a function of the number of used CPU cores. In general,
the speedup decreases as the number of cores increases; however,
even when the maximum of 8 CPU cores are used, the GPU guar-
antees 7x speedup (linear search), 11x speedup (tuple search), and
12x speed (Bloom search). Figure 6(a) also shows an overall higher
speedup for both tuple and bloom search compared to linear search;
this happens because linear search in CPU takes better advantage
of caching due to its serial nature.

Figure 6(b) plots the throughput achieved by each packet clas-
sification algorithm in both CPU (8 cores) and GPU as a function
of the batch size. We see that the speedup is largely independent
of the batch size. This occurs because our implementations are
designed to maximize CPU/GPU utilization even if the number of
input packets is low. That is, we still use a large number of threads
by having each thread match the same packet on a different fraction
of the rule set. Nevertheless, increasing the batch size is beneficial
since the same thread can work on multiple packets absorbing the
cost of loading rules to shared memory (GPU) or cache (CPU). Fig-

ure 6(b) shows another important result: tuple and Bloom search in
CPU outperform linear search in GPU, which highlights the algo-
rithmic benefits of these packet classification strategies. At its peak,
Bloom search achieves about 0.7 Gbps in CPU, which is remark-
ably fast considering the rule set contains 128K rules.

7.3 Throughput Analysis
Rule set size: In this section, we first evaluate the throughput
achieved by linear, tuple, and Bloom search as a function of the
total number of rules in a set. We use synthetic rules sets composed
by OpenFlow rules [5, 17], i.e., 288-bit tuples with 12 fields from
L2 to L4. We generate several synthetic traces where C grows ex-
ponentially from 1 to 1K classes, with each class containing the
maximum number of rules (i.e., n = 256 rules). In this case, the
total number N of rules grows exponentially from 256 to 256K.

Figure 6(c) plots the throughput measured for each algorithm, as
the total number of rules (and classes) increases. When N = 256
rules, the three algorithms have similar performance: tuple search
achieves the highest throughput of 62 Gbps, whereas Bloom and
linear search achieve about 55 Gbps. As N increases, the through-
put of linear search drops and diverges from both Bloom and tuple
search. However, our implementation of linear search still guaran-
tees more than 20 Gbps with a set of 1K rules. When the number of
classes is low (C ≤ 16), tuple search achieves a throughput 10%
higher than Bloom search. This indicates that the additional com-
plexity required by Bloom search to load and check Bloom filters is
not amortized by the gain of avoiding multiple hash table lookups,
as required by tuple search. For C > 16, Bloom search outper-
forms tuple search guaranteeing about a 50% throughput increase,
e.g., 45 Gbps versus 30 Gbps with 16K rules (C = 64). The figure
also shows that Bloom search supports a 10-Gbps link with mini-
mum packet size assuming 128K rules and 512 different classes.

Figure 6(c) also shows a counterintuitive result. As N grows
from 256 to 4K rules (1 to 16 classes), the throughput measured for
both Bloom and tuple search increases. This occurs because in both
implementation a block is responsible for at least a class. Hence,
when the number of classes is lower than the number of SMs in
the GPU (16 SMs in GTX580), some blocks are idle and waste
resources, as previously discussed. It follows that increasing the
number of rules, and thus classes, generates a higher throughput.
Number of classes: We now evaluate the throughput of each al-
gorithm as the number of classes C increases, but the total num-
ber of rules N remains fixed. Figure 7(a) plots the throughput
achieved by linear, tuple, and Bloom search as a function of C
when N = 32K rules. Since each class contains 256 rules at
maximum, at least N/256 classes are required, i.e., 128 classes.

(a) N = 32K. (b) N = 1K, C = 128. (c) N = 1K, C = F = 128.

Figure 7: Throughput as a function of (a) the number of classes C, (b) the number of full classes F , and (c) the number of classes
matching a tuple Cm.

Overall, Bloom search is the fastest packet classification algorithm,
reaching more than 10 Gbps when rules are organized in less than
512 classes. In comparison, tuple search achieves about half the
throughput of Bloom search, e.g., 5 Gbps versus 10 Gbps when
C = 512 classes. Linear search is the slowest packet classification
algorithm, reaching only 1 Gbps regardless of the value of C, since
it does not take advantage of the presence of classes.

Rule distribution: We now evaluate the throughput of each algo-
rithm assuming that not all classes have the same number of rules.
First, we introduce a parameter that expresses how rules are dis-
tributed among classes. By definition, a class exists only if it con-
tains at least one rule. We define F as the number of full classes,
i.e., the number of classes that contain [N − (C − F)]/F rules,
whereas the remaining (C − F) classes contain a single rule. This
allows us to express the rule distribution as skewed, i.e., F = 1 and
thus a single class contains most of rules whereas the remaining
classes contain a single rule, to uniform, i.e., F = C and thus each
class contains the same number of rules.

We set N = 1K and C = 128 to generate several synthetic
traces where the distribution of rules among classes varies from
skewed (F = 4) to uniform (F = 128). Figure 7(b) shows the
throughput of linear, tuple, and Bloom search as F grows. Overall,
the figure shows that both linear and tuple search do not depend
on F , whereas a lower throughput is measured for Bloom search in
presence of a skewed distribution (F ≤ 16). For linear search, this
is intuitive, since there is no notion of classes. For tuple search, this
confirms that the number of classes, and not the number of rules
per class, is key to predicting performance. For Bloom search, we
notice a 20% throughput increase as F grows from 4 to 16 classes.
This is due to the presence of idle blocks for small values of F
(cf. Section 7.1). Despite each block works on two classes (i.e., 128
classes divided by 64 blocks), the load distribution is uneven. In
fact, the probability of finding a match in one of the classes with
a single entry is very low, which means that blocks responsible for
such classes only perform Bloom filter lookups, whereas F blocks
perform both Bloom filter and hash table lookups.

Overlapping rules: We now evaluate the throughput of each algo-
rithm in the presence of overlapping rules, where an incoming tu-
ple matches several rules at once. By definition, overlapping rules
must belong to different classes; we thus define Cm as the number
of classes that match an incoming tuple. For this experiment, we
set N = 1K and C = F = 128, i.e., uniform rule distribution and
8 rules per class, and generate several synthetic traces where Cm

grows exponentially from 1 to 128 classes.

Figure 7(c) shows the throughput of each algorithm in this sce-
nario. The throughput of linear search reduces from 20 to only
6 Gbps as Cm grows from 1 to 128 classes. This throughput de-
crease is due to the higher contention caused by atomic operations
(ATOMICMAX, line 20 in Algorithm 1). A similar effect is notice-
able for tuple search, though less evident due to the higher com-
plexity of the tuple search kernel compared to linear search. The
throughput of Bloom search largely decreases as Cm increases.
The main reason of such reduction is the increase in the number
of hash table accesses to solve conflicts. In the worst case, when
Cm = 128 classes, tuple search becomes faster than Bloom search,
which is intuitive since, when all classes match each incoming tu-
ple, the lookup in the Bloom filter does not provide any benefits,
but instead only introduces additional work.

5-tuple rules: We have assumed so far 288-bit OpenFlow rules
composed of 12 fields. We now experiment with sets with 128-bit
rules composed of 5 tuples, as commonly used by firewalls. We set
N = 1K and C = F = 128, i.e., uniform rules distribution and 8
rules per class, and Cm = 1, i.e., no overlapping rules, to generate
synthetic traces where rules are composed by 5 and 12 fields.

Figure 8 compares the throughput of our algorithms when the
tuple size is 5 and 12 fields. The results for 12 fields are the same
as Figure 7(c) for the case of Cm = 1. Overall, reducing the tuple
size guarantees a higher throughput, e.g., the throughput achieved
by Bloom search grows from 35 to 50 Gbps. Tuple search shows

Figure 8: Throughput as a function of the number of fields in a
tuple f ; N=1K, C=F=128, Cm=1.

Figure 9: Bloom search throughput as a function of packet size
p and maximum latency T .

the highest percentage increase, a 63% increase from 16 to 26 Gbps
versus 43% and 25% for Bloom and linear search, respectively.

7.4 Delay Assessment
Packet processing in GPU requires large batches to maximize

throughput (cf. Figure 5). However, large batches may sometimes
come at the expense of additional delay. As an example, a batch
of a throusand 64-byte packets requires only 67 µs to arrive in a
10 GbE link. For 1518-byte packets, however, the same thousand
packets take 1.2 ms.

So far, a fixed batch size of P = 8K packets was assumed in
order to maximize GPU performance. In a real switch with delay
constraints, however, dynamic batching is required to offload pack-
ets to the GPU as either the batch is complete or a timeout occurs.
In the previous example, in order to guarantee a maximum delay
of 67 µs per packet when the source is transmitting at 5 Gbps, the
batch size must drop to a maximum of 500 packets. We imple-
ment a mechanism in GSwitch (cf. Section 5) to allow an operator
to manually specify the maximum per-packet buffering delay. The
switch then configures a timeout interval to guarantee that this de-
lay is not exceeded.

We now assess the impact of imposing a maximum tolerable
packet delay on the throughput of GSwitch, considering different
packet sizes and input rates. We initially focus on Bloom search,
our fastest packet classification algorithm, assuming no packet I/O.
The analysis is then generalized to other classification algorithms,
and packet I/O is also turned on to analyze its effect on the for-
warding throughput. For both experiments, the realistic scenario
with the ACL trace is used.

Figure 9 shows the throughput of Bloom search as a function of
the packet size, as the maximum delay T grows from 100 µs up to
2 ms. For a maximum packet size p, we consider the worst-case
scenario, where traffic is composed only by packets of that size.
Each subplot refers to an input rate Ri of 10, 30, and 40 Gbps,
respectively. Each combination of 〈input rate, packet size, delay〉
imposes a maximum batch size supported by GSwitch. Figure 9
shows that, for minimum-sized 64-byte packets, the GPU forwards
traffic at almost 40 Gbps with a delay as low as 100 µs. As the
packet size increases to 256 bytes, GSwitch incurs a maximum de-
lay of 500 µs to accumulate enough packets in a batch and sustain
the maximum throughput. The delay must increase to 1 ms for
1 KB packets, but even 2 ms is not enough for 1518-byte packets.

Figure 10: Forwarding throughput as a function of T .

In this case, however, since the packet size is large, the maximum
rate is only 812 Kpps per interface, which could be easily handled
by the CPU. In fact, for the combination 〈40 Gbps, 1518 bytes,
2 ms〉 the batch size is equal to 6K packets; for this batch size,
Bloom search in CPU reaches 0.7 Gbps or about 1 Mpps with 64-
byte packets, cf. Figure 6(b).

We now enable packet I/O at GSwitch and show the performance
of all packet classification algorithms in Figure 10. We assume 64-
byte packets in order to stress the network I/O and packet classifica-
tion modules. Hardware flow control is active at the NICs to slow
down the traffic generator when GSwitch cannot forward packets
fast enough. This occurs due to a limitation either in the packet I/O
or in the packet classification algorithm. In order to isolate these ef-
fects, we plot as stacked bars the additional throughput achieved by
GSwitch assuming no real packet I/O, but with batches of incoming
packets being generated directly at the switch.

Overall, Figure 10 shows that, with packet I/O enabled, GSwitch
achieves a maximum forwarding throughput of 27 Gbps using both
tuple and Bloom search. With locally generated traffic, however,
the GPU supports the maximum aggregate traffic of 40 Gbps us-
ing Bloom search when the maximum delay is larger than 100 µs.
Tuple and linear search, on the other hand, are still limited by
the packet classification at the GPU, and are not able to achieve
40 Gbps, even if not limited by packet I/O.

8. CONCLUSION
In this work, we investigate the benefits of using GPUs for packet

classification in software-based switches such as Open vSwitch.
We first propose efficient GPU-accelerated implementations for lin-
ear search, a baseline packet classification algorithm, for tuple search,
the algorithm currently implemented by Open vSwitch, and for
Bloom search, a proposed extension of tuple search that uses Bloom
filters to prefilter table lookups. We then build GSwitch, a GPU-
accelerated software switch with high-speed packet I/O. We show
by experimental evaluation that, under a realistic scenario, GSwitch
is capable of attaining attaining a much higher throughput than cur-
rent software-based packet I/O engines.

Acknowledgments
We would like to thank our shepherd, Robert Ricci, and the anony-
mous reviewers for their constructive comments.

9. REFERENCES
[1] Open vswitch. http://openvswitch.org/.
[2] BLOOM, B. H. Space/Time Trade-offs in Hash Coding with

Allowable Errors. Communications of the ACM 7, 13 (July
1970), 442–426.

[3] CASCARANO, N., ROLANDO, P., RISSO, F., AND SISTO,
R. iNFAnt: NFA pattern matching on GPGPU devices.
SIGCOMM Comput. Commun. Rev. (2010), 20–26.

[4] CISCO. Nexus1000v. http://cisco.com/.
[5] CONSORTIUM, O. S. Openflow switch specification. Tech.

Rep. Version 1.1.0, Feb. 2011.
[6] CURTIS, A. R., MOGUL, J. C., TOURRILHES, J.,

YALAGANDULA, P., SHARMA, P., AND BANERJEE, S.
DevoFlow: Scaling Flow Management for
High-Performance Networks. In Proc. ACM SIGCOMM
(Toronto, Canada, Aug. 2011).

[7] DERI, L. Improving Passive Packet Capture: Beyond Device
Polling. In Proc. SANE (Amsterdam, The Netherlands, Sept.
2004).

[8] DHARMAPURIKAR, S., KRISHNAMURTHY, P., AND
TAYLOR, D. E. Longest Prefix Matching Using Bloom
Filters. In Proc. ACM SIGCOMM (Karlsruhe, Germany,
Aug. 2003).

[9] FOSTER, N., HARRISON, R., FREEDMAN, M. J.,
MONSANTO, C., REXFORD, J., STORY, A., AND WALKER,
D. Frenetic: a network programming language. SIGPLAN
Not. 46 (2011), 279–291.

[10] HAN, S., JANG, K., PARK, K., AND MOON, S.
PacketShader: A GPU-Accelerated Software Router. In
Proc. ACM SIGCOMM (New Dehli, India, Aug. 2010).

[11] KANG, K., AND YANGDONG, D. Scalable packet
classification via GPU metaprogramming. In DATE
(Grenoble, France, Mar. 2011).

[12] KHRONOS OPENCL WORKING GROUP. The opencl
specification. http://khronos.org/.

[13] LIN, C.-H., TSAI, S.-Y., LIU, C.-H., CHANG, S.-C., AND
SHYU, J.-M. Accelerating String Matching Using
Multi-threaded Algorithm on GPU. In Proc. GLOBECOM
(Miami, FL, USA, Dec. 2010).

[14] MU, S., ZHANG, X., ZHANG, N., LU, J., DENG, Y. S.,
AND ZHANG, S. IP routing processing with graphic
processors. In Proc. DATE (Dresden, Germany, Mar. 2010).

[15] NVIDIA. Profiler User’s Guide – CUDA Toolkit
Documentation. http://docs.nvidia.com/cuda/
profiler-users-guide/index.html/.

[16] NVIDIA. GTX 580. http://geforce.com/
hardware/desktop-gpus/geforce-gtx-580/.

[17] OPENFLOW. Switching reference system.
http://www.openflow.org/wp/downloads/.

[18] OVERMARS, M. H., AND VAN DER STAPPEN, A. F. Range
searching and point location among fat objects. Journal of
Algorithms 21 (1996), 629–656.

[19] PAGH, R., AND RODLER, F. F. Cuckoo Hashing. Journal of
Algorithms 51, 2 (May 2004), 122–144.

[20] RIZZO, L. Netmap: a novel framework for fast packet I/O.
In Proc. USENIX (Boston, MA, June 2012).

[21] SANDERS, J., AND KANDROT, E. CUDA by Example: An
Introduction to General-Purpose GPU Programming, 1 ed.
Addison-Wesley Professional, July 2010.

[22] SONG, H., HAO, F., KODIALAM, M., AND LAKSHMAN, T.
IPv6 Lookups using Distributed and Load Balanced Bloom
Filters for 100Gbps Core Router Line Cards. In Proc. IEEE
INFOCOM (Rio de Janeiro, Brazil, Apr. 2009).

[23] SRINIVASAN, V., SURI, S., AND VARGHESE, G. Packet
Classification Using Tuple Space Search. In Proc. ACM
SIGCOMM (Cambridge, USA, Aug. 1999).

[24] TAYLOR, D. E., AND TURNER, J. S. ClassBench: A Packet
Classification Benchmark. In Proc. IEEE INFOCOM (Hong
Kong, China, Mar. 2004).

[25] WANG, Y., ZU, Y., ZHANG, T., PENG, K., DONG, Q.,
LIU, B., MENG, W., DAI, H., TIAN, X., XU, Z., WU, H.,
AND YANG, D. Wire speed name lookup: a GPU-based
approach. In Proc. NSDI (Lombard, IL, Apr. 2013).

[26] ZHAO, J., ZHANG, X., WANG, X., AND XUE, X.
Achieving O(1) IP lookup on GPU-based software routers.
In Proc. ACM SIGCOMM (New Delhi, India, Aug. 2010).

