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Abstract—In recent years, we have experienced many initia-
tives in developing smart cities across the world. In these densely
populated cities, video surveillance will play an integral role to
ensure the safety of the citizens. The major challenge will be to
transport high volumes of data generated from dense deployment
of video cameras throughout the city to a central aggregation
facility for analysis and storage. To address this problem, we
propose a system solution using existing public bus transit system
to collect data from the cameras and physically transport it to
the bus terminus, to be uploaded to the data center. The system
uses heterogeneous wireless network interfaces, where the camera
nodes form a mesh network to route the data to the nearest bus
stop for offloading. We utilize high capacity links using mmWave
devices at bus stops to offload the data to the buses when they
make routine stops. We also propose a novel routing protocol,
R2H, to route the data generated from these cameras to a bus
stop while minimizing the time to offload the video data to an
incoming bus. The protocol is designed to be aware of the various
challenges that are specific to this system like bus schedule and
video payload. We have evaluated our system using wireless
experiments and simulation using actual bus route maps and
times from New York city area. Our analysis shows that R2H
achieves 60% less end to end delay compared to OLSR under
varying video payload and time of the day.

I. INTRODUCTION

In the wake of rapid urbanization [9], it is paramount
to ensure the security of the citizens in future smart cities.
In such scenarios, video surveillance systems will not only
increase the intelligence of the system to proactively reduce the
chances of various threats, but also will play an important role
in investigation and prosecution after any crime. Studies [18]
have shown that video surveillance systems reduce the crime
rate in various city areas. Also, big cities have already installed
several cameras [5] to increase the surveillance. But these
cameras do not have good quality resolution and much video
processing is required for any recognition system to work.
Nonetheless, there are not enough cameras in the network to
provide full video coverage of the different corners of the city.
To increase the coverage of the video footage, we envision that
future smart cities will be equipped with video surveillance
cameras in every intersection of the cities. To cover 360◦ of
vision, multiple high definition cameras has to be installed in
every street corners.

Installation of multiple video cameras in every street inter-
section for better coverage will require installing new wires,
which has to be connected to the city’s network for the data

Bus Stop Node
Camera Node High Capacity Link to Bus

Bus Route

Routing in mesh network

Fig. 1. The system architecture showing streets, where camera nodes form
a wireless mesh network to route video data to a nearby bus stop. When a
bus visits a stop, data is offloaded from the bus stop node to the bus using
wireless high capacity links.

to be uploaded, and maintenance of the wired network in
hostile outdoor environment. Reconfiguration of the cameras
and addition of new cameras will pose another dimension
of challenge in the system. Also, aggregation of data traffic
over a cellular connection is infeasible. Our study shows that
in Manhattan area, average number of intersections within a
circular region of radius of 0.5Km is about 60. A base station
serving this area will have to support an aggregate video traffic
of upto 4.64Gbps for 1080p resolution. Therefore, existing
cellular networks will be unable to handle this volume of
traffic. To address these issues, we propose a wireless system
solution, which utilizes existing public transportation system
in the city to transport the video surveillance data to the data
centers. Buses stop in a pre-defined location at approximately
regular intervals. But they stop for a short duration, during
which they will collect the data from the neighboring cameras.
So, a high volume of data needs to be transferred within a very
short time, which required high communication bandwidth.
Also, buses do not stop in every intersection and will not be
able to communicate with a camera multiple blocks away. So,
we route the data through camera nodes in multiple hops to
a nearby bus stop, where the bus can collect the data. This
system architecture is described in figure 1.

There are three phases in the proposed solution: a) video
data is routed to the nearest bus stop, where the camera nodes
form a wireless mesh network and not only generate data, but
also actively forward data to the other camera nodes until the
data reaches a bus stop, b) a bus collects all the data in the
stop, when it waits for the passengers using high bandwidth
wireless connections, and c) the bus physically carries the
data to the terminus where it can upload all the aggregated



data by some high bandwidth connectivity, which could be
wired connections. For the first phase of the solution, we
propose to use IEEE 802.11n [10] in public safety bands,
which can potentially yield upto 600Mbps PHY datarate. IEEE
802.11ac can increase this datarate by multiple folds using
MU-MIMO systems. In the second phase, we propose to use
60GHz IEEE 802.11ad [8] based short range links, which
can potentially support upto 6.8Gbps physical layer data rate,
to collect the data from the bus stops. This heterogeneous
network architecture requires a device in the bus stop, which
is essentially a collector in the network, having two interfaces,
one in public safety band and the other one in 60GHz. In this
work, we will focus on the first two phases of the solution.

The concept of using public bus transit system for data
routing has been proposed in delay tolerant networks [13],
[14], [17], [20], [21], [12]. Buses equipped with wireless radios
are able to communicate with each other when they are within
the radio range. This enables routing data from one corner of a
city to another corner [13], [14]. Our proposed solution differs
from these schemesi, since in R2H there is no need for routing
between buses. Buses that operate between cities and rural
areas can transport data from and to remote villages [17], [20],
[21], [12]. Although the idea of treating buses as data ferries
is similar to R2H, the routing algorithm in these schemes is
trivial since the number of buses and stops is limited compared
to thousands of them in smart cities. Research has been done
in large scale video surveillance on processing local video data
to detect object or motion [15], [16], [23]. These studies are
orthogonal as well as complementary to R2H, since we focus
on collecting the raw video data for passive surveillance and
improving intelligence.

The contributions of this work are:

1) A system architecture using heterogeneous network
to aggregate high quality video surveillance data from
densely deployed cameras in smart cities.

2) A channel condition aware, queue aware and bus
schedule aware link state routing protocol to route
the data to the bus stops.

3) Measurement of the throughput in outdoor 60GHz
links between the bus stop (transmitter) and the bus
(receiver) with varying relative position.

4) Data rate estimation in an indoor testbed using IEEE
802.11n wireless USB adapters, which is used as an
input to the routing protocol.

5) Performance comparison with OLSR protocol and
scalability studies by performing simulations based
on real time schedule of buses from the Manhattan
area in New York city.

II. FEASIBILITY STUDY

In this section, we investigate the feasibility of the proposed
system solution in various modern cities of the United States.
We have studied five cities in the US, as shown in figure 2(a),
to find the total number of intersections and bus stops available
in each cities. We used OpensStreetMap project’s [6] APIs
to find the streets and computed the GPS coordinates where
they intersect. We used General Transit Feed Specification
(GTFS) [1] feeds for each city, which are publicly available,
to collect the GPS coordinates of all the bus stops in the
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(a) Normalized number of bus stops
and intersections in five cities of the
United States.
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(b) The cumulative distribution func-
tion of the duration of a bus waiting
in a stop.

Fig. 2. The number of bus stops and intersections, and the waiting duration
of a bus at stops.

city Our study shows that only Manhattan area of New York
city has more than 4000 intersections. Chicago has more than
25, 000 intersections, and maintaining such a wired network
in the often hostile outdoor environments will be challenging.
Nonetheless, we notice that for every 3 intersections, there
exist a bus stop, which indicates, that the data generated in
each intersection may require only 2 to 3 hops to reach a
bus stop. As the throughput degrades with number of hops in
a mesh network, we argue that fewer hops in the route will
not degrade the throughput significantly, which we show with
simulation results in section §V .

The proposed architecture depends on two other factors, a)
the frequency of the buses, and b) the waiting time of buses
in each stop. For the first part, we have collected real time
bus schedule for 24 hours from New York City using GTFS-
realtime feeds [2] and used it as an input to the simulation,
which we discuss in more details in §V. Since these data feeds
do not have very fine granularity in time, we have physically
boarded the buses in the city and measured the duration a
bus waits in a stop with a stopwatch. Figure 2(b) shows the
cumulative distribution function (CDF) of the duration, where
the median is 20 seconds. We use this value in the simulation,
as discussed in §V.

III. SYSTEM OVERVIEW

The proposed system solution will enable the dense un-
planned installation of video cameras, which can communi-
cate among themselves in non-line-of-sight scenarios using
multihop mesh network. The data can be gathered in a delay
tolerant manner as the data moves in multiple hops to the bus,
when the bus physically carries the data to the data center.
There has been some previous work [13] in routing in delay
tolerant network, where the links are not consistent in extreme
environments. However, since the cities have high frequency
of bus schedule, the data can be delivered with constrained
delay guarantees. In the results of the simulation, we have
shown that this delay is in the order of a few minutes. In
any emergency situation, cellular backhaul can still be used to
gather live video streaming data from few of these cameras,
whereas the high quality of video data can be collected by the
proposed architecture.

We propose Run-to-Hop (R2H), the routing protocol, which
is used to route the video data from multiple surveillance
cameras to the bus stop. The video data packets aim to run or
get routed to the bus stop with minimum delay so that they



can hop to a bus as fast as possible. The system solution not
only aims to minimize the delay in the routing algorithm but
also considers the waiting time at each bus stop. The major
factors that affect our system are: a) scheduled and real time
visits of buses in a stop vary, which changes the queues at each
node, b) route closure, when bus stops do not remain as a bus
stop, c) changes in channel quality between two nodes, and d)
contention among multiple flows that changes depending on
the route chosen at source. Our routing algorithm addresses
all these factors and models the system to improve the end-to-
end delay of the system.

The routing algorithm is based on Link State (LS) routing.
The weight of each directed link is calculated using the data
rate of the link, the channel contention at the transmitter,
and the buffer size at the transmitter. In addition, each bus
station has its own weight calculated using the buffer size, the
expected time of the next bus, and the expected time the bus
arrives at the destination. Based on these weights, each camera
node can use Dijkstra’s shortest path algorithm to obtain the
route.

A. System Model

The network is modeled as a directed graph G = (V,E),
where V is the set of nodes in the network including both
camera nodes and bus stations, E is a set of directed links
connecting nodes in V . Each link l = (i, j) ∈ E is a directed
link from node i to node j. The set C ⊂ V is the set of
camera nodes and the set B ⊂ V is the set of bus stations
in the network. Each node i ∈ C maintains a link state
map M , and a routing table T . Each item in M at node i
is denoted as: (j, qij , Pij , rij), (i, j) ∈ E, where qij is the
current enqueued data bits to node j at node i, Pij is the
expected total number of bits to be delivered to node j in a
given time and rij is the expected UDP data rate from node
i to node j. Each item route in the routing table T consists
of two parts: expected delivery delay t, and a route to the bus
station R = (C1, C2, · · · , CK , · · · , Bj), where Cis are camera
nodes in the network and Bj is a bus stop. The items in the
routing table T are sorted in an increasing order according to
the delivery delay t. The first entry in T is used as the route
for the currently generated video packets.

B. Routing Algorithm

The objective of the routing algorithm is to route as much
data as possible to the buses in a given time. We aim at
minimizing the end-to-end delay between the camera node and
the bus while avoiding congestion in the network. We use link
state routing protocol, where the link weight, wjk, for the link
(j, k), (j ∈ C, k ∈ V ) is defined as:

wjk =

 ∑
(j,l)∈E

qjl + Pjl

rjl

+
q1
rjk

(1)

where q1 is one segment of data to be transmitted. The first
part of the equation essentially captures the delay for already
queued packets in node j for all other neighbors l. The second
part denotes the delay incurred for one segment of data to
be transmitted from node j to node k. This ensures that our
routing protocol R2H is aware of the queue conditions in each
link of the route.

The link weight for the link (j, j), (j ∈ B) is calculated
using the current queue length (qj) at the bus station and the
expected bus arrival time Tjk, where k is the index of the kth

expected bus, when all the queued packets at bus stop j can
be transmitted to the bus.

wjj = Tjk, (k − 1)Q < (qj + q1) < kQ (2)

where Q is the expected amount of data that can be delivered
from the bus station to the bus. This mechanism ensures that
our routing protocol is aware of the queue length at the bus stop
and the expected future bus arrival times, which will eventually
influence the amount of the data that might be delivered to the
buses.

Every node keeps track of the changes in the routing table
and broadcasts the first routing entry to its neighbors whenever
that entry is changed. Neighboring nodes also update their
routing table upon receiving the new route entry. The routing
path is determined by the source node and then attached to the
packet. All of the nodes on the path follow the route in the
packet instead of re-routing packet at every node. In case the
path is broken at one relay node, the relay node computes a
new route for the packet.

C. Route Update

In this section, we describe the updation process of the
routing table, which starts at the bus stop and continues period-
ically. R2H not only selects the route to a destination, but also
chooses the best destination given other conditions affecting
the link weight. Hence, unlike other routing algorithms, R2H
stores and updates the minimum link weight to the best chosen
bus stop and all the packets generated from a node are destined
to a bus stop. At any given time, no node in the network is
able to route packets destined to an intermediate camera node
as the final destination. Instead, the best route to only a bus
stop is maintained and all packets generated in that node are
routed to that stop. The steps involved in the routing process
are as follows:

1) The bus stops update and broadcast their own link
weight, wjj , j ∈ B, every T seconds.

2) Each camera node, upon receiving the broadcast
message, updates the weight of the route in the
routing table destined to the same bus stop according
to Equation [1].

3) If this updating changes the first route in the routing
table, then the node broadcasts the new route to
its neighbors. To avoid any broadcast storm in the
network, this broadcast is done only periodically and
not triggered by any change in the table.

4) The process continues until no node broadcasts a new
route.

The proposed updating process does not need to flood the link
weights to every node. Instead, an total link weight metric
is maintained for each path. Hence, the updating overhead is
decreased compared with other link state routing algorithm
such as Fisheye State routing protocol [19]. Figure 3 shows
an example of the route update process, where it starts at bus
stops B1 and B2. Then the information percolates to nodes C1

and C3 respectively. Finally, at node C2, the route is updated
based on the minimum weight of the paths and one of the



B1 B2C1 C2 C3wB1 wC1B1 wB2wC3B2

(wB1+wC1)new 
< wC1B1?

(wB2+wC3)new 
< wC3B2?

1.  (wC3B2+wC2C3)new < min(wC2C1B1, wC2C3B2)?

2.  (wC1B1+wC2C1)new < min(wC2C1B1, wC2C3B2)?

Fig. 3. Route update process, where each camera node broadcasts the link
weights periodically and neighbors update the route information.

bus stops B1 and B2 is chosen as the final destination. Since
every node transmits only one small update packet periodically,
the routing overhead in the network is O(n). In this way, we
minimize the overhead of the updating process.

D. Link State Update

To obtain accurate route delay metric, every node i ∈ C
maintains its link state map: (j, qij , Pij , rij), (i, j) ∈ E. The
current queued number of bits for node j, qij , can be read from
the queue buffer directly. The expected number of bits Pij can
be estimated using heuristic method. Learning the expected
traffic will not only depend on previous datasets, but also on
time of the day, congestion in the network and delays in bus
schedule. However, in this work, we choose to use average
data generated in the past and skip the learning procedure as
our future work.

The technique used to estimate link data rate rij is non-
trivial and critical to link weight estimation. One of the major
contributions of this work is to estimate the UDP data rate,
rij , which is affected by both physical layer data rate and
the wireless channel contention. The physical layer data rate
is again available from the wireless card driver. Since we
use commercial wireless card in our experiment, we are not
able to obtain the channel contention level directly. Instead
we estimate the channel contention in two different cases: 1)
channel fully utilized and 2) channel partially utilized.

We first estimate the packet duration tij for link (i, j) as
following:

tij = tdifs + tavg cont + tpreamble + tphy header

+
bij
Dij

+ tsifs + tack,
(3)

where tdifs and tsifs are the DIFS and SIFS durations
respectively, which are constants as specified in the standard,
tpreamble, tphy header and tack are the durations to transmit the
preamble, physical layer header and acknowledgment packets
respectively, tavg cont is the average contention duration, bij is
the number of bits that can be transmitted in each transmission
opportunity by node i, and Dij is the physical layer data
rate for link (i, j). Let T be the time between two data rate
estimation process, ti be the channel access duration of node
i in T and ni be the number of transmissions by node i in T .
Let pij be the packet reception ratio of link (i, j)

1) Channel Fully Utilized: When the channel is fully
utilized and the packet queue of node i is not empty, the
total duration of all the other transmissions is (T − ti). So
the contention overhead of each transmission by node i is

tc = T−ti
ni

. Consequently, the UDP data rate for link (i, j)

is rij =
bij

tij+tc
× pij .

When the channel is fully utilized and the packet queue
of node i is empty, we record the total number of access
of the channel in T by each neighboring transmitter. Then
the maximum access of node i could be the same as the
maximum access of the neighboring nodes, denoted as N =
max{nl, (i, l) ∈ E}. So, the UDP data rate for the link (i, j)
is rij =

bij×N
N×tij+T−t × pij .

2) Channel Partially Utilized: When the channel is not
fully utilized, we assume that we can pack the remaining dura-
tion of T with transmissions from node i. Assume the channel
is busy for a duration of tbusy in T . Then the total number of
possible transmissions in the link (i, j) is nij =

T−(tbusy−ti)
tij

.

In this case, the UDP data rate is rij =
nij×bij

T × pij .

E. Data Rate Estimation

In this section, we describe the data rate estimation algo-
rithm 1, that runs in each node, i, periodically to update ri,j ,
where node j is a neighbor of node i. This is used to calculate
the link weight as described in equation 1.

Algorithm 1: Data Rate Estimation Algorithm for Each
Node
1 Input:(i). One hop neighbors information
N1 = (i, n1i, t1i), 1 ≤ i ≤ H1. H1 is the number of
neighbors in one hop. n1i is total number of channel access
and t1i is channel access duration for neighbor 1i in T . (ii).
Current PHY data rate rphy for link (i, j) and bits b in each
transmission. (iii). The packet reception ratio pij of link (i, j).
(iv). Current node channel information (ncur, tcur, tbusy).

2 Output: Estimated UDP data rate rudp for link (i, j).

3 tij ← tdifs + tavg contention + tpreamble + tphy header +
b

rphy
+ tsifs + tack

4 n← max{n1i}
5 if tbusy ≈ T then

// channel busy all the time in one hop
6 rudp ← b×n

n×tij+T−tcur
pij

7 return rudp

8 if channel not always busy then
9 nij =

T−(tbusy−tcur)

tij
.

10 rudp =
nij×b

T
pij

11 return rudp

IV. EXPERIMENTAL EVALUATION

We divide our evaluation in two phases: a) implement a
mesh network to collect video data and route to a bus stop,
and b) transmit the data to a bus within a short period of time.

A. Indoor mesh network

1) Network Setup: Since we do not have any licensed spec-
trum, we deploy the first phase of the mesh network and rout-
ing using 5GHz unlicensed frequency. We used the Raspberry
Pi [3] as our camera node, equipped with the camera module
to capture video and a TP-Link (TL-WDN3200) 802.11n USB



Fig. 4. The camera node, using Raspberry Pi equipped with 1080p video
camera and IEEE 802.11n wireless USB adapter.
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Fig. 5. UDP data rate estimation in presence of another inerference in testbed.

wireless adapter to transmit the captured video. We setup a
small testbed of 10 nodes inside a laboratory environment and
was able to receive upto 200Mbps of UDP datarate per link.
The adapter uses Ralink RT5572 chips, and we modified the
drivers in Linux to obtain all the parameters required for the
link estimation, as described in §III-B. However, to show the
scalability of the solution, we implement the routing protocol
in simulation, which we discuss in section §V.

2) Data Rate Estimation: To verify our link data rate esti-
mation algorithm, we modified the driver for TL-WDN3200
wireless USB adapter to log the required information as
described in Algorithm 1. The experiment results are shown
in Figure 5. We use four TL-WDN3200 adapters and iperf
to create 2 UDP flows. Since the highest physical layer data
rate supported by these interfaces is 300 Mbps, the iperf
UDP data rate of one link is set to 300 Mbps to make the
channel fully utilized. The achievable UDP data rate is around
200 Mbps. Then we increase the data rate of the other link
by 10 Mbps every 50 seconds. The difference between our
estimated data rate every second and the real achieved data rate
reported by iperf is plotted in Figure 5(a). The result shows
that the estimation error is around 2% on average. To test the
estimation performance under partially utilized channel, we
use the average data rate under different interference level in
the previous example as baseline comparison. Then we set the
iperf data rate of one link to be 30 Mbps constantly and vary
the interference level on the other link. The estimation error
is shown in Figure 5(b). The result indicates that the error is
less that 6%. We believe that our real estimation error should
be smaller than this value because our baseline data rate is an
average over 50 seconds.

B. Outdoor measurements in 60GHz frequency

In the second phase of the evaluation, we transmit IP
packets over commercially available Wireless HD devices,
based on our previous work [22]. Although outdoor measure-
ments [11] have been done in 60 GHz realm, this research is
the first to deploy short range links over 60 GHz outdoor using
beamforming antennas and commercial off-the-shelf (COTS)

(a) Parking lot, where the red rect-
angle shows the stationary vehicle
and the arrows show the path of the
moving vehicle.

(b) Top: the stationary and the
moving vehicles in the parking
lot. Bottom: 60GHz transceiver
mounted on a vehicle.

Fig. 6. Outdoor experimental setup.
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Fig. 7. Variation of data delivered by the stationary vehicle to the moving
vehicle when it stops.

devices. The intent of this experiment is to understand the
amount of the data that can be delivered when the bus stops
and the range of communication of the 60GHz links, since
these buses may stop farther away from the stop.

We have conducted our experiment in a parking lot with
two vehicles. We have mounted a Wireless HD device on top
of each vehicle and one of them waits in a parking lot, just
like a node in the bus stop. The other vehicle approaches the
stationary vehicle, mimicking the motion of a bus, and halts
parallel to the stationary vehicle. The Wireless HD device then
beamforms and the stationary vehicle transmits data to the
other vehicle, until the other vehicle moves away and the link
is broken. Figure 6 shows the outdoor experimental setup.

The two factors that determine the amount of data that
can be transmitted while the bus comes to a halt are: a) the
duration it stops, and b) the distance between the transmitter
and receiver devices. The 60 GHz links form directional beams
and find the best transmitter-receiver beam pair which will
maximize the link quality. We want to see how the delay
introduced by this process affects the total amount of data that
can be delivered when the bus stops. Also, the orientation of
these devices play a major role in deciding whether a link
may form or not. In our experiment, we drive one of the
vehicles and stop it parallel to the stationary vehicle such
that the devices face each other with a gap of about ≈ 2m
between the devices. Although IEEE 802.11ad [8] is capable
of delivering 6.8Gbps of physical layer datarate, these COTS



devices do not utilize the full potential of it and we could get
upto 2Gbps of UDP throughput. Figure 7(a) shows the amount
of application data in Gbits that is delivered as the duration
of the wait time increases from 5seconds to 40seconds. We
notice that time required for beamforming is negligible and the
data delivered increases linearly with increase in stop duration.
We use this information in our simulation to deliver data from
bus stop nodes to the buses using real time schedule of the
bus. Since the buses in the cities may not stop exactly in the
designated location, we also measure the data delivered when
the bus stops further away from the stop, keeping the duration
constant. From real data collected in the Manhattan area of
New York city, we notice the median duration that a bus waits
in a stop is 20seconds, as shown in figure 2(b). So, we keep
the duration constant at 20seconds for this experiment. Figure
7(b) shows the total amount of data transferred as the distance
between the vehicles increase. A negative value in the x-axis
indicates that the vehicle moves beyond the designated location
and stops after crossing the bus stop. At 0m, the devices are
aligned facing each other. A positive value indicates that the
bus comes to a halt before reaching its’ designated location.
We notice that the data delivered in each of the measured
distances are very similar until it reaches 10m distance, when
the devices cannot form a link. This indicates that the duration
to find the best beam for the transmitter receiver pair is not
significant and will not play a major role in delivering data to
the buses. However, these COTS Wireless-HD devices require
to be aligned facing each other for communication as they do
not beamform in all directions. Hence, we notice that they
cannot form a link at 10m, as they are not aligned. If they are
oriented to face each other, we found the line-of-sight range to
be 30m. However, IEEE 802.11ad devices, will overcome this
challenge by sector-level sweep (SLS) and beam refinement
protocol (BRP) phases.

V. TRACE-DRIVEN SIMULATION

In this section, we evaluate the performance of R2H in
ns3 [4] with real data trace. We have modified ns3 to support
400ns Guard Interval to achieve upto 72.2Mbps physical layer
data rate. With complete implementation of IEEE 802.11n
protocol by channel bonding and multiple streams, we can
achieve upto 600Mbps of physical layer data rate, which is
more than 8 times improvement over our current simulation
platform. So, the throughput as shown in our results, will
improve significantly if we can leverage the new standards. In
this work, our goal is to show the practicality of the system,
which can be scaled to support multiple video streams from
more number of cameras in the actual deployment.

The following datasets are collected from the lower Man-
hattan area: 1) the GPS locations of all intersections, 2) the
GPS locations of all bus stops, 3) the bus schedule of all routes
and their expected arrival time at each bus stop, and 5) the
duration of a bus stopped at the bus stop and the expected
amount of delivered data between the bus and the bus stop as
explained in Section §IV-B.

Simulation Setup: We have shown preliminary results
in the lower Manhattan area, by defining a rectangular zone
with 237 intersections and 50 bus stops. The expected bus
schedule and the actual bus arrival time are preloaded to each
bus stop. We study the system performance for an hour both
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Fig. 8. The number of bus arrivals every 5 minutes starting at 8 A.M. and
at 10 P.M..
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Fig. 9. Throughput and Delay of R2H and OLSR with 100Kbps video data
generation rate starting at 8 A.M..
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Fig. 10. Throughput and Delay of R2H and OLSR with 100 Kbps video
data generation rate starting at 10P.M..

during the day (8:00 A.M.) and at night (10:00 P.M.). Nodes
in the network broadcast their routing and channel access
information every 1 second. The data rate generation rate at
each intersection is varied between 100 Kbps and 1Mbps. We
evaluate aggregate throughput and end to end packet delay for
every 5 minutes. Each bus is expected to pick up 35 Gbits of
data when visiting a bus stop.

Comparing Scheme: We have chosen the most popu-
lar link state based routing protocol, Optimized Link State
Routing Protocol (OLSR) [7], to compare with R2H. OLSR
is specifically designed for wireless ad hoc networks and is
in IETF. It proactively calculates and maintains the shortest
hop routes to all nodes in the network based on the flooded
topology messages. In our simulation, the data generated by
cameras at the intersections are forwarded to the bus stops. So
we manually choose the closest bus stop as the destination for
each intersection before starting the simulation.

Simulation Results: We study the performance of the
proposed protocol by two metrices a) end to end delay and
b) throughput, where the time is calculated from the data
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Fig. 11. Throughput and Delay of R2H and OLSR with 1 Mbps video data
generation rate starting at 8 A.M..

generated to being delivered to a bus. We first investigate
the performance of R2H with 100 Kbps data generated at
each intersection starting from 8 A.M.. The number of bus
arrivals in every 5 minutes is shown in Figure 8(a), which
varies between 51 and 80. Figure 9(a) shows the throughput
of R2H and OLSR over a 5 minute window for an hour.
The aggregate throughput increases at the beginning because
packets accumulate at the bus stops before the first bus arrives.
Then the throughput is affected by the number of bus arrivals
as indicated by the correlation between the shape of Figure 8(a)
and Figure 9(a). Although the average throughput of both
scheme are similar, the achieved throughput of R2H is more
stable over time and experiences less variation due to the
number of bus arrivals. This is because R2H tries to route
packets to the bus stops, which expect a bus visiting in the least
time. So packets generated in an interval are collected at these
bus stops and picked up by the passing buses, which indicates
the achieved throughput of R2H mainly depends on the packet
generation rate at the camera nodes, which is a constant value.
The end-to-end delay of every packet is shown in Figure 9(b).
The average delay of R2H is 61% less compared to that of
OLSR. Since R2H is aware of bus schedule, it routes packets
to the bus stop, where they can be offloaded to a passing
bus in the shortest possible time. As for OLSR, it just routes
packets to the nearest bus stop, where a bus may arrive after
a significant amount of time.

To study the performance of the system under varying inter-
arrival times of the buses, the experiment is repeated at 10
P.M.. The number of bus arrivals is shown in Figure 8(b). We
observe very similar results as shown in Figure 9. Although
R2H only achieves 5% higher throughput than OLSR, it
achieves 57.3% less delay compared to OLSR.

Finally we test the performance of R2H and OLSR with
higher video data generation rate, at 1 Mbps, starting from 8
A.M.. The delay of R2H is still 35% less than that of OLSR
(Figure 11(b)). However, the throughput achieved by R2H is
at the most 14% less than OLSR (Figure 11(a)). A close look
at the simulation shows that most part of the wireless channel
is congested for both schemes with 1 Mbps data generation
rate. In presence of congestion in the network, we sacrifice
throughput to achieve better end to end delay in the network,
by routing the packets to bus stops, where the chance of getting
transmitted to a bus is higher.

VI. CONCLUSION

In this work, we design, implement and evaluate a system
solution to aggregate video surveillance data in future smart

cities using heterogeneous wireless networks. The system
enables unplanned dense deployment of cameras to ensure
safety in the smart cities. It is designed around existing public
transportation systems to deliver video data for aggregation
with a maximum median delay of 5 minutes. The proposed
routing protocol can be extended to route the video data to
multiple aggregation points with internet connectivity, like bus
stops, which further reduces this time for immediate analysis.
We also show the robustness of the system against variable
inter-arrival time and network congestion. In future, we would
like to estimate the bounds for capacity and delay of the system
in a dense deployment across various cities in the world.
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