# Probability and Stochastic Processes: <br> A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Goodman 

Problem Solutions : Yates and Goodman,7.1.4 7.2.1 7.3.3 7.4.4 7.5.2 7.6.4 7.6.5 7.6.7 7.6.8 7.7.2 and 7.8.1

## Problem 7.1.4

Theorem 7.2 which says that

$$
\operatorname{Var}[W]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y]
$$

The first two moments of $X$ are

$$
\begin{gathered}
E[X]=\int_{0}^{1} \int_{0}^{1-x} 2 x d y d x=\int_{0}^{1} 2 x(1-x) d x=1 / 3 \\
E\left[X^{2}\right]=\int_{0}^{1} \int_{0}^{1-x} 2 x^{2} d y d x=\int_{0}^{1} 2 x^{2}(1-x) d x=1 / 6
\end{gathered}
$$

Thus the variance of $X$ is $\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}=1 / 18$. By symmetry, it should be apparent that $E[Y]=E[X]=1 / 3$ and $\operatorname{Var}[Y]=\operatorname{Var}[X]=1 / 18$. To find the covariance, we first find the correlation

$$
E[X Y]=\int_{0}^{1} \int_{0}^{1-x} 2 x y d y d x=\int_{0}^{1} x(1-x)^{2} d x=1 / 12
$$

The covariance is

$$
\operatorname{Cov}[X, Y]=E[X Y]-E[X] E[Y]=1 / 12-(1 / 3)^{2}=-1 / 36
$$

Finally, the variance of the sum $W=X+Y$ is

$$
\operatorname{Var}[W]=\operatorname{Var}[X]+\operatorname{Var}[Y]-2 \operatorname{Cov}[X, Y]=2 / 18-2 / 36=1 / 18
$$

For this specific problem, it's arguable whether it would easier to find $\operatorname{Var}[W]$ by first deriving the CDF and PDF of $W$. In particular, for $0 \leq w \leq 1$,

$$
F_{W}(w)=P[X+Y \leq w]=\int_{0}^{w} \int_{0}^{w-x} 2 d y d x=\int_{0}^{w} 2(w-x) d x=w^{2}
$$

Hence, by taking the derivative of the CDF, the PDF of $W$ is

$$
f_{W}(w)= \begin{cases}2 w & 0 \leq w \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

From the PDF, the first and second moments of $W$ are

$$
E[W]=\int_{0}^{1} 2 w^{2} d w=2 / 3 \quad E\left[W^{2}\right]=\int_{0}^{1} 2 w^{3} d w=1 / 2
$$

The variance of $W$ is $\operatorname{Var}[W]=E\left[W^{2}\right]-(E[W])^{2}=1 / 18$. Not surprisingly, we get the same answer both ways.

## Problem 7.2.1

$$
f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq x \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

We wish to find the PDF of $W$ where $W=X+Y$. First we find the CDF of $W, F_{W}(w)$, but we must realize that the CDF will require different integrations for different values of $w$.

For values of $0 \leq w \leq 1$ we look to integrate the shaded area in the figure to the right.

$$
F_{W}(w)=\int_{0}^{\frac{w}{2}} \int_{x}^{w-x} 2 d y d x=\frac{w^{2}}{2}
$$



For values of $w$ in the region $1 \leq w \leq 2$ we look to integrate over the shaded region in the graph to the right. From the graph we see that we can integrate with respect to $x$ first, ranging $y$ from 0 to $w / 2$, thereby covering the lower right triangle of the shaded region and leaving the upper trapezoid, which is accounted for in the second term of the following expression:

$$
\begin{aligned}
F_{W}(w) & =\int_{0}^{\frac{w}{2}} \int_{0}^{y} 2 d x d y+\int_{\frac{w}{2}}^{1} \int_{0}^{w-y} 2 d x d y \\
& =2 w-1-\frac{w^{2}}{2}
\end{aligned}
$$



Putting all the parts together gives:

$$
F_{W}(w)= \begin{cases}0 & w<0 \\ \frac{w^{2}}{2} & 0 \leq w \leq 1 \\ 2 w-1-\frac{w^{2}}{2} & 1 \leq w \leq 2 \\ 1 & w>2\end{cases}
$$

And the PDF is found by taking the derivative with respect to $w$ :

$$
f_{W}(w)= \begin{cases}w & 0 \leq w \leq 1 \\ 2-w & 1 \leq w \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

## Problem 7.3.3

$$
P_{K}(k)= \begin{cases}1 / n & k=1,2, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

The corresponding MGF of $K$ is

$$
\begin{aligned}
\phi_{K}(s)=E\left[e^{s K}\right] & =\frac{1}{n}\left(e^{s}+e^{2} s+\cdots+e^{n s}\right) \\
& =\frac{e^{s}}{n}\left(1+e^{s}+e^{2 s}+\cdots+e^{(n-1) s}\right) \\
& =\frac{e^{s}\left(e^{n s}-1\right)}{n\left(e^{s}-1\right)}
\end{aligned}
$$

We can evaluate the moments of $K$ by taking derivatives of the MGF. Some algebra will show that

$$
\frac{d \phi_{K}(s)}{d s}=\frac{n e^{(n+2) s}-(n+1) e^{(n+1) s}+e^{s}}{n\left(e^{s}-1\right)^{2}}
$$

Evaluating $d \phi_{K}(s) / d s$ at $s=0$ yields $0 / 0$. Hence, we apply l'Hôpital's rule twice (by twice differentiating the numerator and twice differentiating the denominator) when we write

$$
\begin{aligned}
\left.\frac{d \phi_{K}(s)}{d s}\right|_{s=0} & =\lim _{s \rightarrow 0} \frac{n(n+2) e^{(n+2) s}-(n+1)^{2} e^{(n+1) s}+e^{s}}{2 n\left(e^{s}-1\right)} \\
& =\lim _{s \rightarrow 0} \frac{n(n+2)^{2} e^{(n+2) s}-(n+1)^{3} e^{(n+1) s}+e^{s}}{2 n e^{s}} \\
& =(n+1) / 2
\end{aligned}
$$

A significant amount of algebra will show that the second derivative of the MGF is

$$
\frac{d^{2} \phi_{K}(s)}{d s^{2}}=\frac{n^{2} e^{(n+3) s}-\left(2 n^{2}+2 n-1\right) e^{(n+2) s}+(n+1)^{2} e^{(n+1) s}-e^{2 s}-e^{s}}{n\left(e^{s}-1\right)^{3}}
$$

Evaluating $d^{2} \phi_{K}(s) / d s^{2}$ at $s=0$ yields $0 / 0$. Because $\left(e^{s}-1\right)^{3}$ appears in the denominator, we need to use l'Hôpital's rule three times to obtain our answer.

$$
\begin{aligned}
\left.\frac{d^{2} \phi_{K}(s)}{d s^{2}}\right|_{s=0} & =\lim _{s \rightarrow 0} \frac{n^{2}(n+3)^{3} e^{(n+3) s}-\left(2 n^{2}+2 n-1\right)(n+2)^{3} e^{(n+2) s}+(n+1)^{5}-8 e^{2 s}-e^{s}}{6 n e^{s}} \\
& =\frac{n^{2}(n+3)^{3}-\left(2 n^{2}+2 n-1\right)(n+2)^{3}+(n+1)^{5}-9}{6 n} \\
& =(2 n+1)(n+1) / 6
\end{aligned}
$$

We can use these results to derive two well known results. We observe that we can directly use the PMF $P_{K}(k)$ to calculate the moments

$$
E[K]=\frac{1}{n} \sum_{k=1}^{n} k \quad E\left[K^{2}\right]=\frac{1}{n} \sum_{k=1}^{n} k^{2}
$$

Using the answers we found for $E[K]$ and $E\left[K^{2}\right]$, we have the formulas

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

## Problem 7.4.4

By Theorem 7.10, we know that $\phi_{M}(s)=\left[\phi_{K}(s)\right]^{n}$.
(a) The first derivative of $\phi_{M}(s)$ is

$$
\frac{d \phi_{M}(s)}{d s}=n\left[\phi_{K}(s)\right]^{n-1} \frac{d \phi_{K}(s)}{d s}
$$

We can evaluate $d \phi_{M}(s) / d s$ at $s=0$ to find $E[M]$.

$$
E[M]=\left.\frac{d \phi_{M}(s)}{d s}\right|_{s=0}=\left.n\left[\phi_{K}(s)\right]^{n-1} \frac{d \phi_{K}(s)}{d s}\right|_{s=0}=n E[K]
$$

(b) The second derivative of $\phi_{M}(s)$ is

$$
\frac{d^{2} \phi_{M}(s)}{d s^{2}}=n(n-1)\left[\phi_{K}(s)\right]^{n-2}\left(\frac{d \phi_{K}(s)}{d s}\right)^{2}+n\left[\phi_{K}(s)\right]^{n-1} \frac{d^{2} \phi_{K}(s)}{d s^{2}}
$$

Evaluating the second derivative at $s=0$ yields

$$
E\left[M^{2}\right]=\left.\frac{d^{2} \phi_{M}(s)}{d s^{2}}\right|_{s=0}=n(n-1)(E[K])^{2}+n E\left[K^{2}\right]
$$

## Problem 7.5.2

Using the moment generating function of $X, \phi_{X}(s)=e^{\sigma^{2} s^{2} / 2}$. We can find the $n$th moment of $X, E\left[X^{n}\right]$ by taking the $n$th derivative of $\phi_{X}(s)$ and setting $s=0$.

$$
\begin{aligned}
E[X] & =\left.\sigma^{2} s e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=0 \\
E\left[X^{2}\right] & =\sigma^{2} e^{\sigma^{2} s^{2} / 2}+\left.\sigma^{4} s^{2} e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=\sigma^{2}
\end{aligned}
$$

Continuing in this manner we find that

$$
\begin{aligned}
& E\left[X^{3}\right]=\left.\left(3 \sigma^{4} s+\sigma^{6} s^{3}\right) e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=0 \\
& E\left[X^{4}\right]=\left.\left(3 \sigma^{4}+6 \sigma^{6} s^{2}+\sigma^{8} s^{4}\right) e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=3 \sigma^{4}
\end{aligned}
$$

## Problem 7.6.4

random sum of random variables

$$
V+Y_{1}+\cdots+Y_{K}
$$

where $Y_{i}$ has the exponential PDF

$$
f_{Y_{i}}(y)= \begin{cases}\frac{1}{15} e^{-y / 15} & y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Following Examples 7.7 and 7.10, the MGFs of $Y$ and $K$ are

$$
\phi_{Y}(s)=\frac{1 / 15}{1 / 15-s}=\frac{1}{1-15 s} \quad \phi_{K}(s)=e^{20\left(e^{s}-1\right)}
$$

From Theorem 7.14, $V$ has MGF

$$
\phi_{V}(s)=\phi_{K}\left(\ln \phi_{Y}(s)\right)=e^{20\left(\phi_{Y}(s)-s\right)}=e^{300 s /(1-15 s)}
$$

The PDF of $V$ cannot be found in a simple form. However, we can use the MGF to calculate the mean and variance. In particular,

$$
\begin{aligned}
E[V] & =\left.\frac{d \phi_{V}(s)}{d s}\right|_{s=0}=\left.e^{300 s /(1-15 s)} \frac{300}{(1-15 s)^{2}}\right|_{s=0}=300 \\
E\left[V^{2}\right] & =\left.\frac{d^{2} \phi_{V}(s)}{d s^{2}}\right|_{s=0} \\
& =e^{300 s /(1-15 s)}\left(\frac{300}{(1-15 s)^{2}}\right)^{2}+\left.e^{300 s /(1-15 s)} \frac{9000}{(1-15 s)^{3}}\right|_{s=0}=99,000
\end{aligned}
$$

Thus, $V$ has variance $\operatorname{Var}[V]=E\left[V^{2}\right]-(E[V])^{2}=9,000$ and standard deviation $\sigma_{V} \approx 94.9$.
A second way to calculate the mean and variance of $V$ is to use Theorem 7.15 which says

$$
\begin{aligned}
E[V] & =E[K] E[Y]=20(15)=200 \\
\operatorname{Var}[V] & =E[K] \operatorname{Var}[Y]+\operatorname{Var}[K](E[Y])^{2}=(20) 15^{2}+(20) 15^{2}=9000
\end{aligned}
$$

## Problem 7.6.5

have one of $\binom{46}{6}$ combinations, the probability a ticket is a winner is

$$
q=\frac{1}{\binom{46}{6}}
$$

Let $X_{i}=1$ if the $i$ th ticket sold is a winner; otherwise $X_{i}=0$. Since the number $K$ of tickets sold has a Poisson PMF with $E[K]=r$, the number of winning tickets is the random sum

$$
V=X_{1}+\cdots+X_{K}
$$

From Appendix A,

$$
\phi_{X}(s)=(1-q)+q e^{s} \quad \phi_{K}(s)=e^{r\left[e^{s}-1\right]}
$$

By Theorem 7.14,

$$
\phi_{V}(s)=\phi_{K}\left(\ln \phi_{X}(s)\right)=e^{\left.r \mid \phi_{X}(s)-1\right]}=e^{r q\left(e^{s}-1\right)}
$$

Hence, we see that $V$ has the MGF of a Poisson random variable with mean $E[V]=r q$. The PMF of $V$ is

$$
P_{V}(v)= \begin{cases}(r q)^{v} e^{-r q} / v! & v=0,1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

## Problem 7.6.7

The way to solve for the mean and variance of $U$ is to use conditional expectations. Given $K=k$, $U=X_{1}+\cdots+X_{k}$ and

$$
E[U \mid K=k]=E\left[X_{1}+\cdots+X_{k} \mid X_{1}+\cdots+X_{n}=k\right]=\sum_{i=1}^{k} E\left[X_{i} \mid X_{1}+\cdots+X_{n}=k\right]
$$

Since $X_{i}$ is a Bernoulli random variable,

$$
E\left[X_{i} \mid X_{1}+\cdots+X_{n}=k\right]=P\left[X_{i}=1 \mid \sum_{j=1}^{n} X_{j}=k\right]=\frac{P\left[X_{i}=1, \sum_{j \neq i} X_{j}=k-1\right]}{P\left[\sum_{j=1}^{n} X_{j}=k\right]}
$$

Note that $\sum_{j=1}^{n} X_{j}$ is just a binomial random variable for $n$ trials while $\sum_{j \neq i} X_{j}$ is a binomial random variable for $n-1$ trials. In addition, $X_{i}$ and $\sum_{j \neq i} X_{j}$ are independent random variables. This implies

$$
\begin{aligned}
E\left[X_{i} \mid X_{1}+\cdots+X_{n}=k\right] & =\frac{P\left[X_{i}=1\right] P\left[\sum_{j \neq i} X_{j}=k-1\right]}{P\left[\sum_{j=1}^{n} X_{j}=k\right]} \\
& =\frac{p\binom{n-1}{k-1} p^{k-1}(1-p)^{n-1-(k-1)}}{\binom{n}{k} p^{k}(1-p)^{n-k}} \\
& =\frac{k}{n}
\end{aligned}
$$

A second way to find this result is to use symmetry to argue that $E\left[X_{i} \mid X_{1}+\cdots+X_{n}=k\right]$ should be the same for each $i$. In particular, if we say $E\left[X_{i} \mid X_{1}+\cdots+X_{n}=k\right]=\gamma$, then

$$
n \gamma=\sum_{i=1}^{n} E\left[X_{i} \mid X_{1}+\cdots+X_{n}=k\right]=E\left[X_{1}+\cdots+X_{n} \mid X_{1}+\cdots+X_{n}=k\right]=k
$$

Thus $\gamma=k / n$. At any rate, the conditional mean of $U$ is

$$
E[U \mid K=k]=\sum_{i=1}^{k} E\left[X_{i} \mid X_{1}+\cdots+X_{n}=k\right]=\sum_{i=1}^{k} \frac{k}{n}=\frac{k^{2}}{n}
$$

This says that the random variable $E[U \mid K]=K^{2} / n$. Using iterated expectations, we have

$$
E[U]=E[E[U \mid K]]=E\left[K^{2} / n\right]
$$

Since $K$ is a binomial random varaiable, we know that $E[K]=n p$ and $\operatorname{Var}[K]=n p(1-p)$. Thus,

$$
E[U]=\frac{1}{n} E\left[K^{2}\right]=\frac{1}{n}\left(\operatorname{Var}[K]+(E[K])^{2}\right)=p(1-p)+n p^{2}
$$

On the other hand, $V$ is just and ordinary random sum of independent random variables and the mean of $E[V]=E[X] E[M]=n p^{2}$.

## Problem 7.6.8

played, we can write the total number of points earned as the random sum

$$
Y=X_{1}+X_{2}+\cdots+X_{N}
$$

(a) It is tempting to use Theorem 7.14 to find $\phi_{Y}(s)$; however, this would be wrong since each $X_{i}$ is not independent of $N$. In this problem, we must start from first principles using iterated expectations.

$$
\phi_{Y}(s)=E\left[E\left[e^{s\left(X_{1}+\cdots+X_{N}\right)} \mid N\right]\right]=\sum_{n=1}^{\infty} P_{N}(n) E\left[e^{s\left(X_{1}+\cdots+X_{n}\right)} \mid N=n\right]
$$

Given $N=n, X_{1}, \ldots, X_{n}$ are independent so that

$$
E\left[e^{s\left(X_{1}+\cdots+X_{n}\right)} \mid N=n\right]=E\left[e^{s X_{1}} \mid N=n\right] E\left[e^{s X_{2}} \mid N=n\right] \cdots E\left[e^{s X_{n}} \mid N=n\right]
$$

Given $N=n$, we know that games 1 through $n-1$ were either wins or ties and that game $n$ was a loss. That is, given $N=n, X_{n}=0$ and for $i<n, X_{i} \neq 0$. Moreover, for $i<n, X_{i}$ has the conditional PMF

$$
P_{X_{i} \mid N=n}(x)=P_{X_{i} \mid X_{i} \neq 0}(x)= \begin{cases}1 / 2 & x=1,2 \\ 0 & \text { otherwise }\end{cases}
$$

These facts imply

$$
E\left[e^{s X_{n}} \mid N=n\right]=e^{0}=1
$$

and that for $i<n$,

$$
E\left[e^{s X_{i}} \mid N=n\right]=(1 / 2) e^{s}+(1 / 2) e^{2 s}=e^{s} / 2+e^{2 s} / 2
$$

Now we can find the MGF of $Y$.

$$
\begin{aligned}
\phi_{Y}(s) & =\sum_{n=1}^{\infty} P_{N}(n) E\left[e^{s X_{1}} \mid N=n\right] E\left[e^{s X_{2}} \mid N=n\right] \cdots E\left[e^{s X_{n-1}}\right] E\left[e^{s X_{n}} \mid N=n\right] \\
& =\sum_{n=1}^{\infty} P_{N}(n)\left[e^{s} / 2+e^{2 s} / 2\right]^{n-1} \\
& =\frac{1}{e^{s} / 2+e^{2 s} / 2} \sum_{n=1}^{\infty} P_{N}(n)\left[e^{s} / 2+e^{2 s} / 2\right]^{n} \\
& =\frac{1}{e^{s} / 2+e^{2 s} / 2} \sum_{n=1}^{\infty} P_{N}(n) e^{n \ln \left[\left(e^{s}+e^{2 s}\right) / 2\right]} \\
& =\frac{\phi_{N}\left(\ln \left[e^{s} / 2+e^{s s} / 2\right]\right)}{e^{s} / 2+e^{2 s} / 2}
\end{aligned}
$$

The tournament ends as soon as you lose a game. Since each game is a loss with probability $1 / 3$ independent of any previous game, the number of games played has the geometric PMF and corresponding MGF

$$
P_{N}(n)=\left\{\begin{array}{ll}
(2 / 3)^{n-1}(1 / 3) & n=1,2, \ldots \\
0 & \text { otherwise }
\end{array} \quad \phi_{N}(s)=\frac{(1 / 3) e^{s}}{1-(2 / 3) e^{s}}\right.
$$

Thus, the MGF of $Y$ is

$$
\phi_{Y}(s)=\frac{1 / 3}{1-\left(e^{s}+e^{2 s}\right) / 3}
$$

(b) To find the moments of $Y$, we evaluate the derivatives of the MGF $\phi_{Y}(s)$. Since

$$
\frac{d \phi_{Y}(s)}{d s}=\frac{e^{s}+2 e^{2 s}}{9\left[1-e^{s} / 3-e^{2 s} / 3\right]^{2}}
$$

we see that

$$
E[Y]=\left.\frac{d \phi_{Y}(s)}{d s}\right|_{s=0}=\frac{3}{9(1 / 3)^{2}}=3
$$

If you're curious, you may notice that $E[Y]=3$ precisely equals $E[N] E\left[X_{i}\right]$, the answer you would get if you mistakenly assumed that $N$ and each $X_{i}$ were independent. Although this may seem like a coincidence, its actually the result of theorem known as Wald's equality.
The second derivative of the MGF is

$$
\frac{d^{2} \phi_{Y}(s)}{d s^{2}}=\frac{\left(1-e^{s} / 3-e^{2 s} / 3\right)\left(e^{s}+4 e^{2 s}\right)+2\left(e^{s}+2 e^{2 s}\right)^{2} / 3}{9\left(1-e^{s} / 3-e^{2 s} / 3\right)^{3}}
$$

The second moment of $Y$ is

$$
E\left[Y^{2}\right]=\left.\frac{d^{2} \phi_{Y}(s)}{d s^{2}}\right|_{s=0}=\frac{5 / 3+6}{1 / 3}=23
$$

The variance of $Y$ is $\operatorname{Var}[Y]=E\left[Y^{2}\right]-(E[Y])^{2}=23-9=14$.

## Problem 7.7.2

Knowing that the probability that voice call occurs is 0.8 and the probability that a data call occurs is 0.2 we can define the random variable $D_{i}$ as the number of data calls in a single telephone call. It is obvious that for any $i$ there are only two possible values for $D_{i}$, namely 0 and 1 . Furthermore for all $i$ the $D_{i}$ 's are independent and identically distributed withe the following PMF.

$$
P_{D}(d)= \begin{cases}0.8 & d=0 \\ 0.2 & d=1 \\ 0 & \text { otherwise }\end{cases}
$$

From the above we can determine that

$$
E[D]=0.2 \quad \operatorname{Var}[D]=0.2-0.04=0.16
$$

With the previous descriptions, we can answer the following questions.
(a) $E\left[K_{100}\right]=100 E[D]=20$
(b) $\operatorname{Var}\left[K_{100}\right]=\sqrt{100 \operatorname{Var}[D]}=\sqrt{16}=4$
(c) $P\left[K_{100} \geq 18\right]=1-\Phi\left(\frac{18-20}{4}\right)=1-\Phi(-1 / 2)=\Phi(1 / 2)=0.6915$
(d) $P\left[16 \leq K_{100} \leq 24\right]=\Phi\left(\frac{24-20}{4}\right)-\Phi\left(\frac{16-20}{4}\right)=\Phi(1)-\Phi(-1)=2 \Phi(1)-1=0.6826$

## Problem 7.8.1

In Example 7.12, we learned that a sum of iid Poisson random variables is a Poisson random variable. Hence $W_{n}$ is a Poisson random variable with mean $E\left[W_{n}\right]=n E[K]=n$. Thus $W_{n}$ has variance $\operatorname{Var}\left[W_{n}\right]=n$ and PMF

$$
P_{W_{n}}(w)= \begin{cases}n^{w} e^{-n} / w! & w=0,1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

All of this implies that we can exactly calculate

$$
P\left[W_{n}=n\right]=P_{W_{n}}(n)=n^{n} e^{-n} / n!
$$

Since we can perform the exact calculation, using a central limit theorem may seem silly; however for large $n$, calculating $n^{n}$ or $n$ ! is difficult for large $n$. Moreover, it's interesting to see how good the approximation is. In this case, the approximation is

$$
P\left[W_{n}=n\right]=P\left[n \leq W_{n} \leq n\right] \approx \Phi\left(\frac{n+0.5-n}{\sqrt{n}}\right)-\Phi\left(\frac{n-0.5-n}{\sqrt{n}}\right)=2 \Phi\left(\frac{1}{2 \sqrt{n}}\right)-1
$$

The comparison of the exact calculation and the approximation are given in the following table.

| $P\left[W_{n}=n\right]$ | $n=1$ | $n=4$ | $n=16$ | $n=64$ |
| :--- | :--- | :--- | :--- | :--- |
| exact | 0.3679 | 0.1954 | 0.0992 | 0.0498 |
| approximate | 0.3829 | 0.1974 | 0.0995 | 0.0498 |

