Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Goodman

Problem Solution : Yates and Goodman, 3.5.3

Problem 3.5.3

First we observe that for $n=1,2, \ldots$, the marginal PMF of N satisfies

$$
P_{N}(n)=\sum_{k=1}^{n} P_{N, K}(n, k)=(1-p)^{n-1} p \sum_{k=1}^{n} \frac{1}{n}=(1-p)^{n-1} p
$$

Thus, the event B has probability

$$
P[B]=\sum_{n=10}^{\infty} P_{N}(n)=(1-p)^{9} p\left[1+(1-p)+(1-p)^{2}+\cdots\right]=(1-p)^{9}
$$

From Theorem 3.11,

$$
\begin{aligned}
P_{N, K \mid B}(n, k) & = \begin{cases}\frac{P_{N, K}(n, k)}{P[B]} & n, k \in B \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}(1-p)^{n-10} p / n & n=10,11, \ldots ; k=1, \ldots, n \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The conditional PMF $P_{N \mid B}(n \mid b)$ could be found directly from $P_{N}(n)$ using Theorem 2.19. However, we can also find it just by summing the conditional joint PMF.

$$
P_{N \mid B}(n)=\sum_{k=1}^{n} P_{N, K \mid B}(n, k)= \begin{cases}(1-p)^{n-10} p & n=10,11, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

From the conditional PMF $P_{N \mid B}(n)$, we can calculate directly the conditional moments of N given B. Instead, however, we observe that given $B, N^{\prime}=N-9$ has a geometric PMF with mean $1 / p$. That is, for $n=1,2, \ldots$,

$$
P_{N^{\prime} \mid B}(n)=P[N=n+9 \mid B]=P_{N \mid B}(n+9)=(1-p)^{n-1} p
$$

Hence, given $B, N=N^{\prime}+9$ and we can calculate the conditional expectations

$$
\begin{aligned}
E[N \mid B] & =E\left[N^{\prime}+9 \mid B\right]=E\left[N^{\prime} \mid B\right]+9=1 / p+9 \\
\operatorname{Var}[N \mid B] & =\operatorname{Var}\left[N^{\prime}+9 \mid B\right]=\operatorname{Var}\left[N^{\prime} \mid B\right]=(1-p) / p^{2}
\end{aligned}
$$

Note that further along in the problem we will need $E\left[N^{2} \mid B\right]$ which we now calculate.

$$
\begin{aligned}
E\left[N^{2} \mid B\right] & =\operatorname{Var}[N \mid B]+(E[N \mid B])^{2} \\
& =\frac{2}{p^{2}}+\frac{17}{p}+81
\end{aligned}
$$

For the conditional moments of K, we work directly with the conditional PMF $P_{N, K \mid B}(n, k)$.

$$
E[K \mid B]=\sum_{n=1}^{\infty} \sum_{k=1}^{n} k \frac{(1-p)^{n-10} p}{n}=\sum_{n=10}^{\infty} \frac{(1-p)^{n-10} p}{n} \sum_{k=1}^{n} k
$$

Since $\sum_{k=1}^{n} k=n(n+1) / 2$,

$$
E[K \mid B]=\sum_{n=1}^{\infty} \frac{n+1}{2}(1-p)^{n-1} p=\frac{1}{2} E[N+1 \mid B]=\frac{1}{2 p}+5
$$

We now can calculate the conditional expectation of the sum.

$$
E[N+K \mid B]=E[N \mid B]+E[K \mid B]=1 / p+9+1 /(2 p)+5=\frac{3}{2 p}+14
$$

The conditional second moment of K is

$$
E\left[K^{2} \mid B\right]=\sum_{n=10}^{\infty} \sum_{k=1}^{n} k^{2} \frac{(1-p)^{n-10} p}{n}=\sum_{n=10}^{\infty} \frac{(1-p)^{n-10} p}{n} \sum_{k=1}^{n} k^{2}
$$

Using the identity $\sum_{k=1}^{n} k^{2}=n(n+1)(2 n+1) / 6$, we obtain

$$
E\left[K^{2} \mid B\right]=\sum_{n=10}^{\infty} \frac{(n+1)(2 n+1)}{6}(1-p)^{n-10} p=\frac{1}{6} E[(N+1)(2 N+1) \mid B]
$$

Applying the values of $E[N \mid B]$ and $E\left[N^{2} \mid B\right]$ found above, we find that

$$
E\left[K^{2} \mid B\right]=\frac{E\left[N^{2} \mid B\right]}{3}+\frac{E[N \mid B]}{2}+\frac{1}{6}=\frac{2}{3 p^{2}}+\frac{37}{6 p}+31 \frac{2}{3}
$$

Thus, we can calculate the conditional variance of K.

$$
\operatorname{Var}[K \mid B]=E\left[K^{2} \mid B\right]-(E[K \mid B])^{2}=\frac{5}{12 p^{2}}-\frac{7}{6 p}+6 \frac{2}{3}
$$

To find the conditional correlation of N and K,

$$
E[N K \mid B]=\sum_{n=10}^{\infty} \sum_{k=1}^{n} n k \frac{(1-p)^{n-10} p}{n}=\sum_{n=10}^{\infty}(1-p)^{n-1} p \sum_{k=1}^{n} k
$$

Since $\sum_{k=1}^{n} k=n(n+1) / 2$,

$$
E[N K \mid B]=\sum_{n=10}^{\infty} \frac{n(n+1)}{2}(1-p)^{n-10} p=\frac{1}{2} E[N(N+1) \mid B]=\frac{1}{p^{2}}+\frac{9}{p}+45
$$

