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1. Baby Quantization, Just in Case: This is a simple problem, but it’s worth doing just to
make sure everyone is in synch. Suppose you have (for t ≥ 0) a periodic signal

s(t) = u−2(t) + 2
∞∑

k=1

(−1)ku−2(t− 2k + 1)

for t ≥ 0 where u−2(t) is the unit ramp function.

(a) Sketch s(t) over one cycle.
SOLUTION: refer to figure 1, where two cycles are shown.

(b) What might the PDF of s(t) look like (use your instincts – you do NOT have the formal
machinery to deal with this just yet).
SOLUTION: Uniform on ±1

(c) Q() is a one bit quantizer with x0 = 0, q0 = −1, q1 = 1. Sketch he quantized signal
Q(s(t)) and the error signal s(t) − Q(s(t)). Assume s() is uniform on ±1. Is Q() an
optimum one bit quantizer for s(t)? If not, what IS the optimum one bit quantizer for
s()?
SOLUTION: Analytically we have

Q(s(t)) =
∞∑

k=0

u−1(t− 2k + 1)

for t ≥ 0. The Lloyd-max conditions state that x0 = (q1 + q0)/2 which is true. They
also state that q0 = E[X|X < 0] which is NOT true (should be −1/2). It’s symmetric
so the optimal q1 = 1/2. So it was NOT an optimal quantizer.

(d) Q() is a two bit quantizer with xk = −1/2 + k/2, k = 0, 1, 2 and qk = −3/4 + k/2,
k = 0, 1, 2, 3. Sketch he quantized signal Q(s(t)) and the error signal s(t) − Q(s(t)).
Is this quantizer optimal, assuming uniform s() on ±1?
SOLUTION: Yes, this quantizer is optimal since it satisfies the Lloyd-max optimality
conditions. For sketch, refer to figure 2

2. Quantization Recap: For the two bit quantizer of the previous part, code q0 as 00, q1 as
01, q2 as 10 and q3 as 11. Determine the sequence of codes which would come out of
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Figure 1: 1 bit quantizer, quantized signal and error signal

Figure 2: 2 bit quantizer

the quantizer over one cycle. Assume that samples are taken every half second and that
Q(−0.5) = −1/4, Q(0) = 1/4, Q(0.5) = 3/4.

Discuss how one would reconstruct an approximation of the input signal using the sequence
of codes at a receiver.

SOLUTION: Sequence: 10, 11, 11, 11, 10, 01, 00, 01, 10. These values would be played
back through an inverse coder which maps the binary values to the quantized levels. The
result would be the sketch of the quantized signal. You’d then put the signal through a per-
fect low pass filter (as if it were PAM). The result is a (rough) replica of the original sawtooth
waveform. You might try it using Matlab. For sketch, refer to figure 3

3. Convexity: Using the definition of convexity, determine for what values of α the function
f(x, y) = x2 + αxy + y2 is convex.

SOLUTION: We check for convexity by setting up the following inequality and determine if
it’s true.

λf(x1, y1) + (1− λ)f(x2, y2) ≥ f(λx1 + (1− λ)x2, λy1 + (1− λ)y2)
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Figure 3: 2 bit quantizer and reconstruction

and examine it for all xi and yi. First we rewrite f(x, y) = (x+y)2 +(α−2)xy which gives
us

λ(x1 + y1)
2 + (1− λ)(x2 + y2)

2

+
(α− 2)(λx1y1 + (1− λ)x2y2)

≥
(λ(x1 + y1) + (1− λ)(x2 + y2))

2

+
(α− 2)(λx1 + (1− λ)x2)(λy1 + (1− λ)y2)

Exapnding and rearranging we have

λ(1− λ)(x1 + y1)
2 + (1− λ)λ(x2 + y2)

2

+
(α− 2)λ(1− λ)(x1y1 + x2y2)

≥
2λ(1− λ)(x1 + y1)(x2 + y2)

+
(α− 2)λ(1− λ)(x1y2 + x2y1)

Rearranging again

[(x1 − x2)− (y2 − y1)]
2 ≥ (α− 2)(x1 − x2)(y2 − y1)

which becomes
x2 + y2 ≥ αxy

with x = (x1 − x2) and y = (y2 − y1). Some sleight of hand: remember that sin θ =
x/

√
x2 + y2 and cos θ = y/

√
x2 + y2 so we have

1 ≥ α sin θ cos θ =
α

2
sin 2θ

Since θ can take on any value we must have |α| ≤ 2 to guarantee the inequality holds.

So f(x, y) is convex if |α| ≤ 2.

4. Delta Modulation:
For the sawtooth waveform

s(t) = u−2(t) + 2
∞∑

k=1

(−1)ku−2(t− 2k + 1)
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Figure 4: fs = 2Hz ∆ = 0.5

Figure 5: fs = 2Hz ∆ = 0.1

with t ≥ 0, make sketches of the output of a delta modulator for sample rates 2Hz and 10Hz
and step sizes ∆ = 1/2 and ∆ = 1/10 (four sketches total). Also sketch the outputs of the
associated demodulators.

SOLUTION:

5. Linear Prediction: A one-step linear predictor operates on the sampled version of a sinu-
soidal signal. The sampling rate is equal to 10fo where fo is the frequency of the sinusoid.
The predictor has a single coefficient denoted by w1.

(a) Determine the optimum value of w1 required to minimize the prediction error variance.
SOLUTION: Let the sinusiodal signal be m(t) = A sin(2πfot). To be able to apply
the standard equations 3.66 and 3.67 of Haykin, we need to find the autocorrelation

4



Figure 6: fs = 10Hz ∆ = 0.5

Figure 7: fs = 10Hz ∆ = 0.1

function Rm(τ) of the above sine wave.

Rm(τ) = E[m(t)m(t + τ)]
= E[A sin(2πfot)A sin(2πfo(t + τ))]
= E[A2 sin(2πfot)(sin(2πfot) cos(2πfoτ)− sin(2πfoτ) cos(2πfot))
= A2E[(1− cos(4πfot))/2 cos(2πfoτ)− 1/2 sin(2πfoτ)(sin(4πfot)− sin(0))]

= A2

2
cos(2πfoτ)

where the last step follows from the fact that the signal is a deterministic one and hence
the expected value is over one period.
Hence,

Rm(0) =
A2

2

Rm(1) =
A2

2
cos(2πfo

1

2π10fo

) =
A2

2
cos(0.1)

Thus for this problem we have,

Rm = [Rm(0)], rm = [Rm(1)]

5



Hence, the optimum solution is given by,

wo = R−1
m rm

= cos(0.1)
= 0.995

(b) Determine the minimum value of prediction error variance.
SOLUTION:

Jmin = Rm(0)− rT
mR−1

m rm

= A2

2
−

A2

2
cos(0.1)A2

2
cos(0.1)

((A2)/2)

= A2

2
(1− cos2(0.1))

= 0.005A2

HINT: This is a direct application of linear prediction filter we studied in section
3.13. To be able to apply the standard equation, we need to find the autocorrelation
funtion of the sinusiod of the form m(t) = A sin(2πfot). Note that the sinusiod being
deterministic, the expectation is over one time period.

6


