THE STATE UNIVERSITY OF NEW JERSEY

College of Engineering Department of Electrical and Computer Engineering

332:322

Principles of Communications Systems Problem Set 5

Spring

Reading: Haykin 3.1–3.4

- 1. Nyquist 101: Specify the Nqyusit rate and Nyquist interval for each of the following signals. Note that $sinc(x) \equiv \frac{\sin(\pi x)}{\pi x}$.
 - (a) g(t) = sinc(200t)
 - (b) $g(t) = sinc^2(200t)$
 - (c) $g(t) = sinc(200t) + sinc^2(200t)$
- 2. Nyquist 102: Suppose we have samples of a signal $a_k = g(k\Delta)$ where Δ is shorter than the Nyquist interval for the bandlimited function g(t). Derive an explicit time-domain expression for how we recover the function g(t) from the samples $\{a_k\}$.
- 3. **Nyquist Grad School:** Does the Nyquist Sampling Theorem apply to strictly time limited signals? If not why not? If so, why? This problem is a bit subtle so think carefully and analytically (and justify any assumptions).

4. Pulse Modulation

- (a) What is Pulse Amplitude Modulation? Provide a pictorial example.
- (b) What is Pulse Position Modulation? Provide a pictorial example.
- (c) What is Pulse Frequency Modulation? Provide a pictorial example.
- (d) What is Pulse Width Modulation? Provide a pictorial example.
- (e) Consider a full wave rectified AM signal $r(t) = m(t) \cos 2\pi f_c t$ where we assume $m(t) \ge 0 \ \forall t$. Assuming the highest frequency content of m(t) is much less than f_c , can r(t) be considered the approximate result of a pulse modulation method applied to m(t)? If so, which one?
- 5. Problem 3.5 in Haykin