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Abstract—In this paper, we present the architectural details
of Odin Help Engine, a novel social search engine that leverages
online social networks and sensing data from mobile devices to
find targeted answers for subjective queries and recommendation
requests. In Odin, users’ queries are routed to those connections
in their social network who (i) are most likely to help answer
the question and (ii) can do so with a high level of confidence.
Specifically, we first apply a link-based latent variable model to
infer social relationships between users from their social network
data to form a strength-weighted relationship graph. We then
infer users’ expertise by context mining from social network data
as well as from their mobile device sensor data. Lastly we apply
pagerank-like algorithm that takes both relationship strength and
user expertise into account to find a person that is most likely
willing to answer the question posted by the user. We present the
general design of the architecture and outline a location-related
query example for detailed illustration.

I. INTRODUCTION

Over the last decade, search engines have rapidly evolved

and are today, perhaps the most useful resource that helps

people get answers to their queries. Even though people could

(and do) use search engines to find answers to most questions,

today’s search engines are still far from an ideal solution. In

particular, search engines are not good at abstract, subjective

and recommendation type questions. For example, queries

like: “What would be a good course from Rutgers’ Computer

Science department next fall that is aligned with my research

interests in machine learning and computer networks?” cannot

be answered by regular search engines. In fact, it cannot

even be expressed in a way that today’s search engines can

understand, let alone answer it. The fundamental lacuna arises

from the fact that search engines rely on links and content that

already exists somewhere on the Internet and are thus inept

at handling user-specific and contextual queries. They also

fail to provide quality assurance, accountability and follow-up

questioning that are usually associated with human to human

interaction during the question-answer process. Coming back

to the aforementioned example, a good way to get a useful

answer for that question would be by posing it to all your

friends or colleagues with domain expertise in computer

science. However, querying all the people you know is very

expensive in terms of time and energy and is thus not a viable

solution. Instead, there should be a mechanism or a system to

help find users the right person to ask such a question. That

system and mechanism is the new type of question answering

solution that is referred to as Help Engine in this paper.

The rapid growth of online social networks such as Face-

book [1], LinkedIn [2], Twitter [3] provides a unique oppor-

tunity for such a class of help engines. Connections between

users in such services can serve as links along which questions

can be routed. Along the same lines, Aardvark [4], the state-of-

the-art social search engine, was recently proposed to match

questions from a user to other users based on their area of

expertise. However, it requires participants to explicitly list

their skill set. We argue that the assumption of users being

fully aware of the topics that they can potentially answer about

is too restrictive. For example, regular driving through a certain

area would not be listed as an area of expertise, yet this is

precisely the knowledge required to answer a question about

the state of road-traffic in that area. A help engine which is

capable of finding out its users’ domains of expertise would

be much more powerful. In addition, Aardvark underutilizes

the large amount of available data from social networks.

Specifically, they simply use relationship information in the

profile posted on those social network without considering

latent relationships that can be inferred from activities between

participants as well as similarities between them.

Also central to our architecture is the use of sensor data from

mobile devices. The surge in smart phone penetration along

with the abundance of sensors that are integrated into today’s

mobile devices provides a great source of information that

can be tapped by social search engines. However, to the best

of our knowledge, there are no such systems that attempt to

harvest mobile sensing information for use within social search

engines. In this paper, we propose a help engine architecture

to harvest sensing information collected by mobile devices and

combine it with social relationships inferred from online social

networks.

Contributions: Our contributions in this work are three-

fold. We propose a system that applies machine learning

techniques to infer relationships between participants and

builds a weighted relationship graph among users. We harvest

and index sensing information to build an expertise database

upon which our pagerank-like algorithm is applied to find the

best candidate that can answer a given question. We present a

case study of location-related queries to illustrate the operation

of our help engine.

This paper is organized as follows: the overview of our

system is presented in Section II, followed by descriptions

of each component,Sections III, IV and V. We illustrate the

system operations by an example in Section VI. Section VII

concludes the paper and points out future work directions.



II. SYSTEM OVERVIEW
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Fig. 1. Odin architecture overview

Our general approach is to build Odin with the help of

four functional processes, of which three are done offline:

(1) Mining social network profiles, joint activities between

users and their photo/post tagging behaviour to create a

strength-weighted relationship graph (WRG) through the use

of machine learning techniques; (2) Crawling and indexing all

the available resources on social networks to extract expertise

information and creating a baseline indexed database (BiDB);

(3) Converting sensor data and associated metadata to text in

order to make it indexable and combining it with BiDB to

create the indexed database (iDB); (4) Identifying and routing

the query to the most suited responder by ranking users based

on their relationship with the asker as well as their expertise.

Before going into further details about individual components,

we first describe the process of user registration and outline

the query life assuming the existence of the indexed database

and the weighted relationship graph.

A. User Registration

When a new user registers for Odin, our system initiates

a number of steps to collect the data required for expertise

indexing as well as relationship graph expansion. The first step

involves getting social contacts from the user. In particular,

the new user is requested to provide the credentials for his/her

online social network accounts such as Facebook, LinkedIn

and Twitter, from which friendship, affiliation information,

photo/post tagging, and other activities are extracted. A user’s

relationship graph can be further expanded by sending out

manual invitations to join Odin. In the next step, the user

is asked to specify the types of sensing information he/she is

willing to provide to the system. Optionally, the user is allowed

to create and manage different groups of friends with different

access rights to their sensing information. As an example,

Bob can allow only the contacts in his close friends group

to utilize his location information while allowing everyone in

the network to use the data collected by the pollution sensors

on his mobile device. As the last step for registration, the

new user is asked to optionally provide or select the topics

that he is willing or not willing to answer questions about.

Once the registration process is completed, the user is active

on the system and can readily ask and answer questions

from other Odin members or anonymous users. Note that

the indexing and relationship graph building processes run

concurrently on the back-end while the user completes the

registration (see Section III and Section V for the detailed

description).

B. Query life

As a registered member, the user can start asking questions

by publicly posting them on Odin’s wall using a multitude

of web-based interfaces, Odin UI on his own device, or by

using third party plug-ins (e.g. Thunderbird plug-in, Facebook

app, etc). The user can also classify the questions as private

and restrict the list of of people who can view and answer

the question. Figure 1 illustrates the architecture and flow of

information in Odin. The query is first verified and analyzed

by the Query Analyzer to determine the appropriate topics

for the question. The analyzed question is then routed to the

Ranking Engine, where the potential responders are selected

using a ranking algorithm similar to those used in corpus-based

search engines. In particular, the Ranking Engine accesses the

Inverted Index and the Weighted Relationship Graph (WRG)

for the list of candidate responders, and ranks them to identify

the ones that have the most likelihood of willingness to

answer the question with the highest level of confidence.

Restrictions specified in the query are taken into account by the

ranking engine to eliminate responder candidates that violate

the restrictions, regardless of their ranking. Once the top

candidates are found, the Ranking Engine simultaneously or

sequentially forwards the query to them to get the answer. The

answers are then routed from the responder to the asker via

the Message Direction Engine. If the asker is not completely

satisfied with the answer, he/she can ask followup questions to

improve the satisfaction. In all cases, the asker has an option

of leaving a feedback on how well the question was answered

to help Odin improve its routing performance.

III. INTIMACY INFERENCE FOR WEIGHTED RELATIONSHIP

GRAPH

The friendship connectivity graph directly extracted from

user profiles on online social networks (e.g. friend list on

Facebook, contact list on Google mail, or connection list on

LinkedIn) is not sufficient for grading relationships. It merely

indicates binary relational ties between users (i.e. are they

connected or not). Evidently, binary relationship graphs do
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not capture the intimacy level between users, which plays a

crucial role in predicting the willingness to answer a question

from the user. Hence, inferring the intimacy, or strength, of

the relationship is important.

Based on habitual similarities and interactions between

users, Xiang et al. [5] proposed a latent variable model (LVM),

to distinguish strong relationships from the weak ones. Similar

latent factor analysis has been used in other machine learning

algorithms, for example in the winning entry of the Netflix

prize [6]. Leveraging this technique, we prune and augment

the original binary connectivity graph into a relationship graph

where links between users are weighted by the strength of

their connection. LVM relies on two assumptions about the

correlation of ‘strength of the relationship’ with profile simi-

larity and frequency of interaction. Homophily theory [7] from

sociology postulates that people with similar characteristics

tend to form ties with one another and vice versa, which means

the stronger the ties, the higher the similarity [8]. Further more,

closer the relationship, the more frequent interaction between

individuals happens. Interactions in the realm of online social

network range from profile viewing, picture and comment

tagging to private messaging. Since everyone lives on a limited

amount of time and energy resources, one tends to direct those

resources towards the relationships that have higher priority,

and are more important. Based on these two assumptions, the

relationship strength is modeled as the hidden cause of user

interactions while profile similarity serves as prior knowledge

to the model.

We use the latent variable model described in [5] in the

manner described below. In order to rigorously define the

model, we use the following notations: let x(i) and x(j)

be the profile vectors of two individuals i and j, where

each element of these vector could denote, for example the

individual’s affiliation, place of residence, hobbies, etc. Let

y
(ij)
t for t = 1, 2, . . . ,m be the occurrences of m unique

interactions between the two individuals. Further, let z(ij)

denote the latent (or hidden) relationship strength between

i and j: higher this value, more ‘stronger’ is the relationship

between i and j. The key purpose of LVM is to infer z(ij)

based on x(i) and x(j). It also predicts the influence of z(ij)

on y
(ij)
t . The relationship between these variables can be

illustrated by a directed graph as shown in Figure 2. The

model can be considered as a combination of discriminative

(p(Z|X)) and generative (p(Y |Z)) components corresponding

to the upper and the lower parts of the graph respectively.

Thus the likely causal relationship among those variables can

be decomposed as:

P (z(ij),y(ij)|x(i),x(j))

= P (z(ij)|x(i),x(j))

m∏

t=1

P (y
(ij)
t |z(ij)) (1)

As shown in [5], although the latent strength value z captures

the similarities and interactions between a pair of users, it is

difficult to directly compute from online user data. Instead,

it can be estimated for each pair of people to maximize the

overall observed data likelihood. It is worthy to note here that

the model can be applied to estimate the strength of directed

as well as undirected relationships. This asymmetric attribute

of the LVM model is indeed desirable, since it reflects real

world social connections (e.g. one can consider another person

his/her best friend but not vice versa. Similarly, one can tag

a photo of the other person but not the other way around).

For our social help engine, we assume the widely used

Gaussian distribution to model the conditional probabilities

P (z(ij)|x(i),x(j)). Then the conditional probability between

z(ij) and x(i),x(j) is as follows:

P (z(ij)|x(i),x(j)) = N (wT s(ij), v) (2)

where s(ij) is a similarity vector computable from x(i)and

x(j), w is a n-dimensional weight vector to be estimated

and v is the variance in Gaussian model which is manually

configured.

From (1), we need to model the conditional probability of

y
(ij)
t given z(ij). To avoid including interactions which are

independent of user relationships, a set of auxiliary variables

a
ij
t1, a

ij
t2, . . . , a

ij
tq are introduced. The logistic function to model

y
(ij)
t given z(ij) and a

ij
t can be written as:

P (yijt = 1|z(ij), aijt ) =
1

1 + e−(θT
t u

(ij)
i

+b)
(3)

where u
ij
i = [z(ij), aijt ]

T and θt = [θt1, θt2, ..., θt(q+1)]
T .

Additionally, L2 regularizers are applied on the parameters w

and θ to avoid over-fitting and finally we get the computable

equation for the joint probability as Eq.(7) in [5]. Once the

joint probability is found, we can estimate the latent variable z

by treating it as a parameter and finding a set of point estimates

Ŵ , θ̂, ẑ that maximizes the likelihood P (y, Ŵ , θ̂, ẑ|x). A

coordinate ascent optimization scheme is applied to find z(ij)

by using Newton-Raphson iterative approach by utilizing

Eqs.(11)-(16) in [5].

We use the approach described above to find the strength of

the relationship between all users in Odin, which is then uti-

lized to convert the original connectivity graph into a weighted

relationship graph. We note that although the bootstrapping

for estimating the latent strength values has a computational

complexity of O(N2) for N users, it only needs to be done

in the offline mode and thus does not add delays to the query-

response process.



IV. DATA COLLECTION

A. Device signal harvesting

The Odin help engine takes advantage of readily available

sensory data from mobile devices to enrich the expertise

database and to infer user context. Sensor-equipped devices

such as mobile phones, tablets and laptops that are registered

to Odin users can report their raw sensor readings attached

with a timestamp to the Odin server. The server combines

these raw data streams with additional application-specific

databases (ASD) to add meaning and semantics into the data

before dumping it to the iDB for indexing. We illustrate

the process by taking location sensing information as an

example. A raw time series of <latitude, longitude> tuples

stored in the database does not benefit Odin directly. For

it to be better utilized, it must be converted into text-form

indexable information. For example, it can be converted to a

series of street addresses by using the Google reverse geo-

coding service [9]. Indeed, this time-stamped street address

information coupled with other sensing data such as movement

speed can help answer the class of questions on real-time

traffic monitoring. Further, such information combined with

accelerometer traces can help answer questions related to road

quality on specific streets utilizing techniques outlined in [10].

In general, harvesting of sensor signals requires a dedicated

database and related transformation software that can convert

the raw sensing information into human readable and machine

indexable information.

B. Social Crawling for Fine Tuning of Expertise Database

In addition to the mobile sensors, another important source

of data is the user generated content on social networks.

In Odin, identification of topics that a user might be able

to answer is of utmost importance. Our current framework

incorporates the following four mechanisms for extracting and

indexing social network context. Additional mechanisms can

be easily added to further fine tune the expertise database.

• Blog posts extraction: Users are most likely to blog

about things they know and/or are interested in. Thus

we enhance the user expertise scores based on keywords

found in any linked blogs.

• Online social network profile: Professional networks like

LinkedIn offer a good source of indexable expertise areas

for Odin users. Data extracted from social networks are

weighted based on the source: for example data from

LinkedIn or Monster is given a higher weight compared to

those from Facebook or Twitter and the relative weights

can be further optimized for performance.

• Online tagging and comments: To parse comments and

tags, we apply a linear SVM technique to first categorize

the general topic of the tag and comments and then

run the TF-IDF taxonomy-based extractors to identify

expertise related keywords.

• Satisfaction Feedback: Last but not the least impor-

tant source of information for fine tuning the expertise

database is the feedback from other users. For example,

if a prospective responder repeatedly declines to answer

questions about a specific topic, the ranking of that user

for that particular topic is reduced.

V. RANKING ALGORITHM

Once the intimacy graph and the expertise database is

available, the key online component required is the Ranking

Engine. In this section, we describe the functioning of the

Ranking Engine in detail, starting with a statistical model of

the algorithm.

Simply ranking the users based on the relevance of their ex-

pertise to the question being asked is inefficient. For example,

if the highest ranked user does not have any relationship with

the asker, there is a high chance that he/she might decline to

answer the question. Hence the goal of our ranking algorithm

is to simultaneously maximize the probability of getting an

answer back and the probability of the answer being of high

quality. To that end, we use an adaptive form of the ranking

algorithm proposed in [4] based on our Weighted Relationship

Graph. Let T denote the set of all possible topics archived

in Odin and t ∈ T be a topic that a question q belongs to.

The probability p(ui|q) that user i will successfully answer

the question q depends on level of expertise of user ui on the

topic t. Statistically, it can be represented as:

p(ui|q) =
∑

t∈T

p(ui|t)p(t|q) (4)

Further, we define the query-independent probability p(ui, uj)
that user ui is willing to answer a question from user uj

regardless of the question. Since we rely on the assumption

that stronger the relationship between two users, higher is

the probability they are willing to answer questions from one

another, we can estimate p(ui, uj) as:

p(ui, uj) = WRG(ui, uj) (5)

Note that this optimization is in sharp contrast with the existing

social search engine [4] where no data about the strength of

connection is available. We define r(ui, uj , q), the scoring

function for question q for the user pair i, j as the composition

of the two probabilities:

r(ui, uj, q) = p(ui|uj)p(ui|q)

= p(ui|uj)
∑

t∈T

p(ui|t)p(t|q)

= WRG(ui, uj)
∑

t∈T

p(ui|t)p(t|q) (6)

In equation (6), WRG(ui, uj) and p(ui|t) are pre-computed

upon user signups and is continuously updated in the back-

ground through techniques described in Section IV-A. Cate-

gorizing the question, which is reflected in the p(t|q) term is

the only computation which is done online, after a question

is asked. Similar to legacy search engines like Google and

newer social search engines [4], we use probabilistic classi-

fication [11] to derive the set of topics given a certain query

term q.
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VI. USE CASE ANALYSIS FOR LOCATION BASED QUERIES

In this section, we present a use case example of Odin being

utilized for location based queries. In order to build the

WRG graph, we first need to identify the list of similarities

and interactions which would serve as inputs for the LVM

algorithm. We define similarities between user i and user j as

s(ij) = [s
(ij)
1 , s

(ij)
2 , . . . , s

(ij)
8 ] with the first six variable denot-

ing similarities in the following attributes: school, company,

geographical region, industry, job title, functional area; and

s
(ij)
7 , s

(ij)
8 being the logarithm of the normalized counts of

common groups and connections respectively between users i

and j. Here s
(ij)
l for l ∈ [1, 6] assumes the value 1 when i and

j share the same attribute and 0 otherwise. Further, we define

four interactions y(ij) = [y
(ij)
1 , y

(ij)
2 , y

(ij)
3 , y

(ij)
4 ] between users

representing wall posts, recommendations, profile views and

picture tags. The y
(ij)
t variables assume binary values depend-

ing on the interactions between i and j. For example, if user

i has written a recommendation for user j, then y
(ij)
2 = 1 and

0 otherwise. For each pair of users, Odin uses the algorithm

outlined in section III to infer the WRG graph. In order to

augment the system with location data, GPS traces in the

form of <latitude, longitude> tuples are collected from users

and converted to street name data using the Goolge reverse

geo-coding service [9]. Online profile information, tagging

activities, wall posts and the converted location information is

stored in the indexed database. The expertise database is next

synthesized using the procedures outlined in Section IV-B.

The Odin Engine configured with the set of variables

defined above can be readily used for location specific queries

such as: “What is the current traffic condition at Holland

Tunnel, NY ?” Figure 3 illustrates the routing of such a query

from User 1. After being verified by the Query Analyzer

and categorized as a location-related query, it is forwarded

to the Ranking Engine. Here the iDB is invoked to find if

any other users with strong relationship with User 1 has data

that matches the query content. In the example above, User

9 happens to have passed through the same location and thus

the query is answered using User 9’s database records.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the architecture of Odin, a

social search engine that leverages data streams from online

social networks and mobile devices to help users find answers

to contextual and subjective questions. Through Odin, user

queries are routed to a subset of their social contacts who are

most likely to answer the questions and whose expertise match

with the query content. The system makes use of a link-based

latent variable model to infer social relationships between

users from their social network profiles to form a strength-

weighted relationship graph. User expertise is determined by

mining social network data as well as sensor data from mobile

devices. Lastly a pagerank-like algorithm that takes both the

relationship strength and the user expertise into account is

applied to find the right set of users to forward the query.

We outlined the details of each component required to real-

ize such a system and are currently working on implementing

it as an online service. We believe that the novel combination

of link-based latent variable model and automatic classification

of user expertise offers a powerful mechanism for realization

of more useful search engines. The basic framework presented

here can be augmented with a number of features to make it

more useful and deployable.

On-going work targets a number of system components

including: (i) intelligent sampling and data compression mech-

anisms to address energy constraints in mobile devices; (ii)

signal fusion from multiple sensors and from different sets of

social network data; (iii) incentive mechanisms and business

model to encourage participation. Future work also involves

rigorous mechanisms to ensure the privacy of sensitive infor-

mation which is critical for the successful deployment of such

a system.
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